NOMBRE DEL TRABAJO

Espinal_2023_Tesis_UNTELS.pdf

AUTOR Daniel Espinal

RECUENTO DE PALABRASRECUENTO DE CARACTERES37141 Words161718 CharactersRECUENTO DE PÁGINASTAMAÑO DEL ARCHIVO133 Pages8.3MBFECHA DE ENTREGAFECHA DEL INFORMEFeb 28, 2024 10:54 AM GMT-5Feb 28, 2024 10:56 AM GMT-5

• 10% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- 10% Base de datos de Internet
- Base de datos de Crossref

- 7% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossref
- 0% Base de datos de trabajos entregados

• Excluir del Reporte de Similitud

- Fuentes excluidas manualmente
- Bloques de texto excluidos manualmente

FORMULARIO DE AUTORIZACIÓN PARA LA PUBLICACIÓN DE TRABAJOS DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL DE LA UNTELS (Art. 45° de la ley N° 30220 – Ley)

Autorización de la propiedad intelectual del autor para la publicación de tesis en el Repositorio Institucional de la Universidad Nacional Tecnológica de Lima Sur (https://repositorio.untels.edu.pe), de conformidad con el Decreto Legislativo N° 822, sobre la Ley de los Derechos de Autor, Ley N° 30035 del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, Art. 10° del Rgto. Nacional de Trabajos de Investigación para optar grados académicos y títulos profesionales en las universidades – RENATI Res. N° 084-2022-SUNEDU/CD, publicado en El Peruano el 16 de agosto de 2022; y la RCO N° 061-2023-UNTELS del 01 marzo 2023.

TIPO DE TRABAJO DE INVESTIGACIÓN

1). TESIS (\times) 2). TRABAJO DE SUFICIENCIA PROFESIONAL ()

DATOS PERSONALES

Apellidos y Nombres: Epinal de la Cruz Daniel Abel	
D.N.I.: 70848655	2
Otro Documento:	
Nacionalidad: Pervano	
Teléfono: 941434615	
e-mail: danesuber @gmail.com	

DATOS ACADÉMICOS

Pregrado Facultad: Facultad de ingeniería y gestion Programa Académico: Tesis Título Profesional otorgado: Ingeniero Electrónico y Telecomunicaciones

Postgrado

Universidad de Procedencia:	11
País:	
Grado Académico otorgado:	

Datos de trabajo de investigación

Título: ANÁLISIS COMPARATIVO DE ALGORITMOS DE OPTIMIZACIÓN BIO-INSPIRADOS PARA EL DISEÑO DE ANTENAS PATCH EN SERIE Fecha de Sustentación: 13 de diciembre del 2023

Calificación: Aprobado con Distinción

Año de Publicación: 2024

AUTORIZACIÓN DE PUBLICACIÓN EN VERSIÓN ELECTRÓNICA A través de la presente, autorizo la publicación del texto completo de la tesis, en el Repositorio Institucional de la UNTELS especificando los siguientes términos:

Marcar con una X su elección.

1) Usted otorga una licencia especial para publicación de obras en el REPOSITORIO INSTITUCIONAL DE LA UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR.

Si autorizo 🔀 No autorizo _____

2) Usted autoriza para que la obra sea puesta a disposición del público conservando los derechos de autor y para ello se elige el siguiente tipo de acceso.

	Derechos de autor			
TIPO DE ACCESO	ATRIBUCIONES DE ACCESO	ELECCIÓN		
ACCESO ABIERTO 12.1(*)	info:eu-repo/semantics/openAccess (Para documentos en acceso abierto)	(x)		

3) Si usted dispone de una PATENTE puede elegir el tipo de ACCESO RESTRINGIDO como derecho de autor y en el marco de confiabilidad dispuesto por los numerales 5.2 y 6.7 de la directiva Nº 004-2016-CONCYTEC DEGC que regula el Repositorio Nacional Digital de CONCYTEC (Se colgará únicamente datos del autor y el resumen del trabajo de investigación).

	Derechos de autor	
TIPO DE ACCESO	ATRIBUCIONES DE ACCESO	ELECCIÓN
	info:eu-repo/semantics/restrictedAccess (Para documentos restringidos)	()
ACCESO RESTRINGIDO	info:eu-repo/semantics/embargoedAccess (Para documentos con períodos de embargo. Se debe especificar las fechas de embargo)	()
۸.	info:eu-repo/semantics/closedAccess (para documentos confidenciales)	()

Rellene la siguiente información si su trabajo de investigación es de acceso restringido:

Atribuciones de acceso restringido:

Motivos de la elección del acceso restringido:

Espinal de la Cruz, Daniel Abel

APELLIDOS Y NOMBRES

70848655 DNI

Firma y huella:

Lima, <u>19</u> de <u>enero</u> del 20<u>24</u>

FACULTAD DE INGENIERÍA Y GESTIÓN ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES

"ANÁLISIS COMPARATIVO DE ALGORITMOS DE OPTIMIZACIÓN BIO-INSPIRADOS PARA EL DISEÑO DE ANTENAS PATCH EN SERIE"

TESIS Para optar el Título Profesional de

INGENIERO ELECTRÓNICO Y TELECOMUNICACIONES

PRESENTADO POR EL BACHILLER

ESPINAL DE LA CRUZ, DANIEL ABEL ORCID: 0009-0007-1061-2309

ASESOR CLEMENTE ARENAS, MARK DONNY ORCID: 0000-0002-2806-1513

> Villa El Salvador 2023

"Año de la unidad, la paz y el desarrollo"

DECANATO DE LA FACULTAD DE INGENIERÍA Y GESTIÓN

ACTA DE SUSTENTACIÓN DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO ELECTRÓNICO Y TELECOMUNICACIONES

En Villa El Salvador, siendo las 10:00 horas del día 13 de diciembre del 2023, en la Facultad de Ingeniería y Gestión, los miembros del Jurado Evaluador, integrado por:

PRESIDENTE: Dr. CARLOS ANDRES MUGRUZA VASSALLO	DNI	N°	15759394	C.I.P.	N°	102334
SECRETARIO: Dr. JINMI GREGORY LEZAMA CALVO	DNI	N°	42294872	C.I.P.	N°	97712
VOCAL : Mg. PABLO ANDRES VILLEGAS CHUNGA	DNI	N°	09694556	C.I.P.	N°	199274
ASESOR : Dr MARK DONNY CLEMENTE ARENAS	DNI	N°	41962207	С.І.Р.	N°	181400

Designados mediante Resolución de Facultad de Ingeniería y Gestión Nº 635-2023-UNTELS-R-D de fecha 02 de octubre del 2023 quienes dan inicio a la Sesión Pública de Sustentación y Evaluación de Tesis.

Acto seguido, el (la) aspirante al :	Grado de Bachiller		Título Profesional
----------------------	------------------	--------------------	--	--------------------

Tesis

Don: DANIEL ABEL ESPINAL DE LA CRUZ identificado(a) con D.N.I. N° 70848655 procedió a la Sustentación de:

Trabajo de investigación

Titulado: "ANÁLISIS COMPARATIVO DE ALGORITMOS DE OPTIMIZACIÓN BIO-INSPIRADOS PARA EL DISEÑO DE ANTENAS PATCH EN SERIE".

Trabajo de suficiencia 🔲 Artículo científico

Aprobado mediante Resolución de Facultad de Ingeniería y Gestión N° 298-2022-UNTELS-CO-V.ACAD-FIG de fecha 30 de junio de 2022, de conformidad con las disposiciones del Reglamento General de Grados Académicos y Títulos Profesionales vigentes, sustentó y absolvió las interrogantes que le formularon los señores miembros del Jurado Evaluador.

Concluida la Sustentación se procedió a la evaluación y calificación correspondiente, resultando el aspirante APROBADO por DISTINCIÓN con la nota de: DIECISEIS (letras) 16 (números), de acuerdo al Art. 65° del Reglamento General para optar el Título Profesional.

(CALIFICACIÓN	CONDICIÓN	FOLIVALENCIA
NÚMERO	LETRAS	CONDICION	LOWALLIGA
16	DIECISEIS	APROBADO CON DISTINCION	MUY BUENO

Siendo las 11:00 horas del día 13 de diciembre del 2023, se dio por concluido el acto de sustentación, firmando el jurado evaluador el Acta de Sustentación, que obra en el Decanato de la Facultad de Ingeniería y Gestión

v Gestión. Dr. CARLOS ANDRES MUGRUZA VASSALLO PRESIDENTE C.I.P. Nº 102334 Mg. PABLO ANDRES VILLEGAS CHUNGA Dr. JINMINGREGORY LEZAMA CALVO VOCAL SECRETARIO C.I.P. Nº 199274 C.I.P. Nº 97712 DANIEL ABEL ESPINAL DE LA CRUZ BACHILLER Av. Bolivar S/N, sector 3, grupo 1, mz A, sublote 3 Villa El Salvador - Lima - Perú

www.untels.edu.pe

(01) 715 8878

DEDICATORIA

A mis familiares, por el apoyo incondicional.

AGRADECIMIENTO

Agradezco a los maestros de la carrera profesional Ingeniería electrónica y telecomunicaciones por su dedicación, esfuerzo y tiempo dedicados a nuestro desarrollo profesional y lograr de nosotros personas útiles para la sociedad.

RESUMEN

La tesis presentada en este trabajo se titula "Análisis Comparativo de Algoritmos de Optimización Bio-inspirados para el Diseño de Antenas de Parche en Serie". El objetivo de este trabajo fue implementar tres algoritmos de optimización para evaluar cuál es el más adecuado para un problema de optimización que consiste en una antena de parche en serie de 8 elementos. Los algoritmos implementados fueron: el Algoritmo de Murciélago (BA), el Algoritmo de Optimización por Enjambre de Partículas (PSO) y el Algoritmo Genético (GA).

Para validar el proceso de optimización, se estableció una función de aptitud que incluye siete parámetros geométricos de la antena. Además, se consideraron dos casos en la función de aptitud; en el primer caso, se dio prioridad al ancho de banda (BW) y, en el otro, la prioridad fue la ganancia (G). El software Matlab se utilizó para la implementación de los algoritmos con la antena. Los parámetros de la antena se extrajeron de un simulador electromagnético estándar.

Para realizar el análisis comparativo de los algoritmos, se realizaron veinte intentos para cada algoritmo con treinta iteraciones en cada intento para los dos casos de prioridad de la función objetivo. Una vez obtenidos los resultados, se analizaron los intentos que lograron el objetivo en los tres algoritmos. También se compararon los valores de cada parámetro de la mejor antena obtenida de cada algoritmo de optimización. De esta manera, se logró el objetivo propuesto de esta tesis, ya que se implementaron los tres algoritmos de optimización y se analizaron los parámetros de una antena. Además, se identificó el algoritmo BA ser el más adecuado para la optimización de una antena parche en serie de 8 elementos en los dos casos establecidos en una función objetivo que comprende siete parámetros de antena.

Palabras clave: algoritmo de optimización, antena, función objetivo.

ABSTRACT

The thesis presented in this work is titled "Comparative Analysis of Bio-Inspired Optimization Algorithms for the Design of Series Patch Antennas."The objective of this work was to implement three optimization algorithms to evaluate which one is most suitable for an optimization problem involving an 8-element series patch antenna. The implemented algorithms were the Bat Algorithm (BA), the Particle Swarm Optimization Algorithm (PSO), and the Genetic Algorithm (GA).

To validate the optimization process, a fitness function was established that includes seven geometric parameters of the antenna. Additionally, two cases were considered in the fitness function; in the first case, bandwidth (BW) was prioritized, and in the other, gain (G) was the priority. Matlab software was used for the implementation of the algorithms with the antenna. The antenna parameters were extracted from a standard electromagnetic simulator.

To perform the comparative analysis of the algorithms, twenty attempts were made for each algorithm with thirty iterations in each attempt for the two priority cases of the objective function. Once the results were obtained, the attempts that achieved the objective in all three algorithms were analyzed. The values of each parameter of the best antenna obtained from each optimization algorithm were also compared. This way, the proposed objective of this thesis was achieved since the three optimization algorithms were implemented, and the antenna parameters were analyzed. Furthermore, the BA algorithm was identified as the most suitable for optimizing an 8-element series patch antenna in the two cases established in an objective function comprising seven antenna parameters.

Keywords: optimization algorithm, antenna, objective function.

ÍNDICE

RESUN	UMEN		IV
ABSTR	АСТ		V
INTRO	DUCCI	IÓN	1
CAPIT	U LO I:	PLANTEAMIENTO DEL PROBLEMA	2
1.1.	Motiva	ación	2
1.2.	Estado	del arte	2
1.3.	Descri	pción del problema	3
1.4.	Formu	lación del Problema	4
	1.4.1.	Problema General	4
	1.4.2.	Problemas específicos	5
1.5.	Objeti	vos	5
	1.5.1.	Objetivo General	5
	1.5.2.	Objetivos específicos	5
1.6.	Justifi	cación	6
CAPIT	U LO II	: MARCO TEÓRICO	8
2.1.	Antece	edentes	8
2.2.	Bases	teóricas	9
	2.2.1.	Parámetros Fundamentales de antena	9
	2.2.2.	Tipos de antenas	14
	2.2.3.	Arreglos de antenas	15
	2.2.4.	Algoritmos de optimización	17
	2.2.5.	Algoritmos utilizados en antenas	19
	2.2.6.	Algoritmo murciélago	21
	2.2.7.	Algoritmo genético	23
	2.2.8.	Algoritmo de optimización del enjambre de partículas	27

CAPIT	ULO III: METODOLOGÍA DE LA INVESTIGACIÓN	29
3.1.	Linea de investigación	29
3.2.	Descripción de la metodología	29
	3.2.1. Función Objetivo	30
	3.2.2. Descripción de la antena de referencia	32
	3.2.3. Implementación y prueba del algoritmo BA en diseño de antena	46
	3.2.4. Implementación y prueba del algoritmo PSO	56
	3.2.5. Implementación del algoritmo GA	66
	3.2.6. Análisis comparativo de los 3 algoritmos para el diseño de antenas .	75
CAPIT	ULO IV: DISCUSIÓN DE RESULTADOS	96
CAPIT	ULO V: CONCLUSIONES	98
RECON	MENDACIONES	99
PRESP	ECTIVA	100
BIBLIC	OGRAFÍA	102
ANEXO)S	109

LISTADO DE FIGURAS

1.1.	Evolución exportaciones Perú	6
2.1.	Patrón de radiación 3D	11
2.2.	Ancho de Banda BW	11
2.3.	Polarización	12
2.4.	Ancho de haz de media potencia	13
2.5.	Diagrama polar de phi	13
2.6.	Antena dipolo y monopolo	14
2.7.	Antena reflectora	15
2.8.	Antena microstrip	16
2.9.	Arreglo de antenas	16
2.10.	Beamforming	17
2.11.	Ecolocalización de los murciélagos	21
2.12.	Partes del individuo	23
2.13.	Representación Binaria	24
2.14.	Representación Entera	24
2.15.	Representación Real	24
2.16.	Selección de individuos	25
2.17.	Mutación de un bit	25
2.18.	Cruce de un punto	26
2.19.	Cruce de dos puntos	26
2.20.	Movimiento de las partículas	27
3.1.	Etapas de investigación	30
3.2.	Antena parche serial de 8 elementos	32
3.3.	Antena 8-PSA	33
3.4.	Muesca en la 8 placa	34
3.5.	Proceso del algoritmo	36
3.6.	Selección de la región para el BW	40
3.7.	Error en la selección de regiones de BW	41
3.8.	Análisis de inflexiones	41

3.9.	Selección de región y de inflexiones	42
3.10.	Ganancia máxima	43
3.11.	Parámetro $\delta \overline{G}_{\theta=1}$	44
3.12.	Ángulo de ganancia máxima	44
3.13.	Ancho de Haz	45
3.14.	Radio vector	48
3.15.	Método de la ruleta	67
3.16.	Intentos del algoritmo BA con prioridad BW	76
3.17.	Intentos del algoritmo PSO con prioridad BW	76
3.18.	Intentos del algoritmo GA con prioridad BW	77
3.19.	Comparación de BW con prioridad BW	79
3.20.	Patrón de radiación 3D con prioridad BW	80
3.21.	Patrón de radiación 2D del parámetro $\delta \overline{G}_{\theta=1}$ con prioridad BW	81
3.22.	Plano cartesiano de la ganancia con Phi=90° - Prioridad BW	83
3.23.	Plano cartesiano de la ganancia con Phi=0° - Prioridad BW	84
3.24.	Intentos del algoritmo BA con prioridad G	85
3.25.	Intentos del algoritmo PSO con prioridad G	86
3.26.	Intentos del algoritmo GA con prioridad G	87
3.27.	Comparación de BW con prioridad G	88
3.28.	Patrón de radiación 3D con prioridad G	89
3.29.	Patrón de radiación 2D del parámetro $\delta \overline{G}_{\theta=1}$ con prioridad G	90
3.30.	Plano cartesiano de la ganancia con Phi=90° - Prioridad G	92
3.31.	Plano cartesiano de la ganancia con Phi=0º - Prioridad G	93

LISTADO DE TABLAS

3.1.	Dimensiones de la antena	35
3.2.	Pseudo código del análisis de los parámetros	37
3.3.	Dimensiones iniciales de las antenas	38
3.4.	Parámetros iniciales de las antenas	39
3.5.	Parámetros del BA para la optimización	46
3.6.	Pseudo código del algoritmo murciélago (BA)	47
3.7.	Intervalos de cumplimiento BA de función objetivo con prioridad BW	49
3.8.	Dimensiones óptimas de las antenas BA-BW	50
3.9.	Parámetros óptimos de las antenas BA-BW	51
3.10.	Intervalos de cumplimiento BA de función objetivo con prioridad G	52
3.11.	Dimensiones óptimas de las antenas BA-G	54
3.12.	Parámetros óptimos de las antenas BA-G	55
3.13.	Parámetros del PSO para la optimización	57
3.14.	Pseudo código del algoritmo PSO	58
3.15.	Intervalos de cumplimiento PSO de función objetivo con prioridad BW	59
3.16.	Dimensiones óptimas de las antenas PSO-BW	60
3.17.	Parámetros óptimos de las antenas PSO-BW	61
3.18.	Intervalos de cumplimiento PSO de función objetivo con prioridad G	62
3.19.	Dimensiones óptimas de las antenas PSO-G	64
3.20.	Parámetros óptimos de las antenas PSO-G	65
3.21.	Parámetros del GA para la optimización	66
3.22.	Pseudo código del algoritmo Genético	68
3.23.	Intervalos de cumplimiento GA de función objetivo con prioridad BW	69
3.24.	Dimensiones óptimas de las antenas GA-BW	70
3.25.	Parámetros óptimos de las antenas GA-BW	71
3.26.	Intervalos de cumplimiento GA de función objetivo con prioridad G	72
3.27.	Dimensiones óptimas de las antenas GA-G	73
3.28.	Parámetros óptimos de las antenas GA-G	74
3.29.	Porcentaje por iteraciones con prioridad BW	75

3.30.	Porcentaje de intervalo de función objetivo con prioridad BW	78
3.31.	Porcentaje por iteraciones con prioridad G	86
3.32.	Porcentaje de intervalo de función objetivo con prioridad G	87
3.33.	Resumen de mejores resultados por algoritmo y por prioridad	95
3.34.	Comparación de la antena parche serial	97
6.1.	Parámetros óptimos BA Prioridad BW	109
6.2.	Dimensiones óptimas BA con prioridad BW	110
6.3.	Parámetros óptimos BA Prioridad Ganancia	111
6.4.	Dimensiones óptimas BA con prioridad Ganancia	112
6.5.	Parámetros óptimos PSO Prioridad BW	113
6.6.	Dimensiones óptimas PSO con prioridad BW	114
6.7.	Parámetros óptimos PSO Prioridad Ganancia	115
6.8.	Dimensiones óptimas PSO con prioridad Ganancia	116
6.9.	Parámetros óptimos GA Prioridad BW	117
6.10.	Dimensiones óptimas GA con prioridad BW	118
6.11.	Parámetros óptimos GA Prioridad Ganancia	119
6.12.	Dimensiones óptimas GA con prioridad Ganancia	120
6.13.	Matriz de consistencia	121

INTRODUCCIÓN

El diseño de antenas es un problema complejo de múltiples variables que envuelve la interacción de onda-materia a múltiples rangos de frecuencia como las bandas milimétricas, multibandas y así como su relación con diseños circuitales restringido debido al perfil del dispositivo. Esta complejidad implica problemas para el ingeniero diseñador que puede solucionar aplicando métodos de optimización que permitan automatizar algunos procesos repetitivos. En el diseño geométrico de una antena se utilizan estrategias analíticas con diferentes herramientas para el diseño de estructuras y la determinación de los parámetros geométricos de antena. Por este motivo, los métodos de optimización son usados cada vez más para estimar con las dimensiones geométricas y de los materiales para que brinden un rendimiento requerido.

Los algoritmos de optimización son iterativos, cuyo objetivo es resolver un problema de múltiples variable, como el diseño de antenas. La solución en cada iteración se valida o no, si una función objetivo se aproxima a un valor requerido. Esta función objetivo contiene un conjunto de parámetros y variables determinado por el ingeniero diseñador. Los parámetros optimizables utilizan variables con valores binarios o decimal que se reemplazan en la función objetivo, cuyos valores bajos obtenidos representan diseños más deseables que los de valores más altos.

La evaluación de la función objetivo incluye software de cálculo y de simulación para evaluar las variables de entrada asociados a parámetros. El software de simulación devuelve parámetros de salida que pasan por la función objetivo obteniendo varios valores, escogiendo el objetivo más óptimo en cada iteración. Las simulaciones son procesos que consume mucho tiempo, es muy deseable utilizar un algoritmo de optimización que requiera el menor número de iteración para alcanzar el objetivo deseado de la función objetivo.

Existen muchos tipos de algoritmo de optimización que evalúan la distancia del valor hacia el objetivo, otros evalúan la distancia del objetivo con el patrón de sus valores, algunas suelen ser más adecuadas para ciertas clases de diseños de antenas que otras. En este trabajo utilizará algoritmos bio-inspirados que evalúa la distancia del valor hacia el objetivo. Se analizará una visión general de cada algoritmo, se comparará con varias funciones objetivo y diferentes poblaciones para obtener menor tiempo de simulación para alcanzar el objetivo.

CAPITULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Motivación

El presente proyecto de tesis se realiza con la motivación de implementar herramientas computacionales que permitan acelerar el proceso de diseño y desarrollo de dispositivos, circuitos y sistemas electrónicos de alta frecuencia (27.5 GHz hasta 28.25 GHz). Los algoritmos de optimización son herramientas de inteligencia artificial que encuentran aplicaciones en muchas áreas de la ingeniería, y la electrónica no es la excepción. El diseño de antenas es un problema complejo de múltiples variables, donde los parámetros circuitales de las antenas juegan un papel importantísimo en las propiedades de radiación, y la situación es similar en el sentido inverso. Es necesario por lo tanto esclarecer los métodos mas apropiados para problemas específicos de antenas. En el presente caso se aborda el problema donde hay múltiples elementos de antena parche en un mismo substrato. Esto con el fin de establecer el método mas eficiente para el desarrollo de la tecnología de direccionamiento de haz o beamforming. Es así, que el presente trabajo de tesis plantea encontrar el mejor método entre 3 de los métodos mas utilizados y recientes; algoritmo genético GA, enjambre de partículas PSO, y de murciélago BA.

1.2. Estado del arte

Dentro del estado del arte en la temática de diseño de antenas y el uso de métodos de optimización para disminuir o automatizar el proceso de diseño, se han encontrado una serie de artículos y tesis.

En el articulo de Kumar (A. S. Kumar, 2017) titulado: Rectangular Micro Strip Antenna Design Using Particle Swarm Optimization, Neural Networks and Genetic Algorithms". En este articulo se presentan ecuaciones complejas en la función objetivo para direccionar los haces y minimizar el nivel de los lóbulos laterales. Así mismo, se presenta una comparación entre los algoritmos Genético, PSO y Red Neuronal en un arreglo de antenas de 10 patchs. El algoritmo PSO permite un sintetizar los patrones de radiación requeridos por los autores en un menor tiempo de simulación, en comparación con los dos otros algoritmos. La comparación es interesante porque el algoritmo PSO y Genético requiere de 200 y 360 ciclos respectivamente mientras que la Red Neuronal requiere de 410. Es necesario mencionar que los dos mejores algoritmos de dicho trabajo se utilizaran en la presente tesis. A diferencia de dicho trabajo, en el presente trabajo de investigación se desea establecer que algoritmo es mejor en la optimización de los parámetros de una antena patch serial. Además, se utilizaran función de objetivos mas sencillas en comparación a las funciones complejas presentadas en el trabajo citado.

1.3. Descripción del problema

En la actualidad numerosas tecnologías vienen usando el direccionamiento de haz o beamforming (Presnell, 1974), para la mejora de las figuras de merito o rendimiento. Podemos mencionar a los sistemas de radar (Deng y Himed, 2009) y a los sistemas de comunicaciones satelitales (Miura, Tanaka, Chiba, Horie, y Karasawa, 1997), como algunos de los que ya la usan. Entre los que se espera que adopten al beamforming se encuentran los sistemas de posicionamiento de precisión (Carsenat y Decroze, 2012), comunicaciones móviles de quinta generación (Yoshida y cols., 2013), etc. El beamforming consiste en utilizar sistemas mecánicos/electrónicos necesarios para direccionar el patrón de radiación de una antena de manera dinámica. En su versión mas reciente se usa el control electrónico, para manipular la alimentación de elementos de antena individuales dentro de un arreglo de antenas. El desarrollo de estos arreglos de antenas implica etapas de diseño, fabricación, optimización y validación de los prototipos. El diseño y la optimización se realizan con la ayuda de herramientas computacionales, que por lo general tienen recursos limitados en nuestro país.

Los procesos de optimización se hacen aun mas complejos a medida que la antena presenta geometrías, métodos de alimentación o técnicas sofisticadas de mejora de rendimiento. Para el beamforming se utilizan arreglos de antenas por lo general planares como las Microstrip. Con el fin de mejorar los parámetros de antena dentro de los rangos de operación de los sistemas inalámbricos y compensar el aumento de las perdidas de trayecto, se diseñan e utilizan los llamados arreglos de antenas. Los cuales necesitan ser diseñados matemáticamente para obtener parámetros de antena requeridos por los sistemas mencionado. Es así, que se han implementado distintos métodos para disminuir el tiempo de diseño y mejorar los parámetros de antena.

Existen en la literatura implementaciones de algoritmos de optimización bioinspirados como el algoritmo Bat (Shao, Qiu, y Zhang, 2020), PSO (Bansal, Sethi, y Sharma, 2018), Genético (Pumallica-Paro, Arizaca-Cusicuna, y Clemente-Arenas, 2019), (X. Liang y cols., 2020), etc. A pesar de que dichos métodos pueden obtener resultados de manera eficiente, muchos de ellos presentan problemas como la gran cantidad de iteraciones, consumo de recursos computacionales, etc. Estos problemas no hacen posible una comparación eficaz, ya que los casos de aplicación son distintos. En el trabajo de (Pan y Zhang, 2019) se presenta una comparación entre el algoritmo BA y GA para minimizar los lóbulos laterales. En dicha publicación, requiere como mínimo 100 iteraciones para lograr su objetivo. También, en la publicación de (Van Luyen y Vu Bang Giang, 2017), busca suprimir la interferencia del an-cho de haz.

Realizando una comparación con el algoritmo BA, PSO y GA. En dicho trabajo requieren de 50 iteraciones para acercarse a su objetivo. Sin embargo, no se ha podido encontrar soluciones de optimización hechas a medida para el diseño arreglo de antena parche serial y mucho menos análisis comparativos que permitan establecer el método más eficaz. El diseño y optimización de antenas requieren del uso de paquetes de softwares de simulación de electromagnética. Estos se basan en la resolución de las ecuaciones de Maxwell, usando diferentes métodos computacionales, para el cálculo de los campos radiados en un espacio tridimensional. Es así que se pueden simular prototipos de antenas. Es más se puede controlar el flujo de diseño y sobretodo el de optimización usando los algoritmos bioinspirados como el algoritmo murciélago, algoritmo genético y de enjambre de partículas para obtener valores óptimos. Un análisis comparativo permitiría identificar el algoritmo más eficiente para un arreglo de antenas microstrip seriales.

1.4. Formulación del Problema

1.4.1. Problema General

El diseño de antenas patch en serie es un proceso complejo que involucra múltiples parámetros y variables, lo que dificulta su optimización utilizando métodos convencionales. Por lo tanto, es necesario evaluar el desempeño de diferentes algoritmos de optimización bioinspirados para determinar el más adecuado para la optimización de antenas patch en serie y mejorar su eficiencia y rendimiento.

1.4.2. Problemas específicos

- ¿Que función objetivo es la más adecuada para optimización del ancho de banda y la ganancia de la antena y que incluya los siete parámetros de la antena?
- ¿Cómo se pueden adaptar los algoritmos bio-inspirados para la optimización de una antena serial de 8 parches?
- ¿Cuál es el impacto de la priorización de los parámetros de la función objetivo en los resultados para el mejoramiento de la antena?
- ¿Cómo se pueden analizar y comparar los resultados de los tres algoritmos de optimización y determinar cuál es el más apropiado para el mejoramiento de la antena serial de 8 parches?

1.5. Objetivos

1.5.1. Objetivo General

Realizar un análisis comparativo de la eficiencia de los tres algoritmos de optimización bio-inspirados para el diseño de antenas patch en serie, adaptándolos para la optimización de una antena serial de 8 parches y determinar el algoritmo más apropiado para su optimización.

1.5.2. Objetivos específicos

- Establecer una función objetivo que incluya siete parámetros de la antena y dos casos en la función de aptitud: uno para el ancho de banda y otro para la ganancia.
- Implementar y adaptar los algoritmos de optimización bio-inspirados murciélago (BA), optimización del enjambre de partículas (PSO) y algoritmo genético (GA) para la optimización de una antena serial de 8 parches.
- Analizar la eficacia de los tres algoritmos de optimización en términos de la priorización en los parámetros para mejorar los parámetros de la antena serial de 8 parches.

 Comparar los resultados obtenidos de los tres algoritmos de optimización y determinar el algoritmo más apropiado para el mejoramiento de la antena serial de 8 parches en términos de su capacidad para cumplir con la función objetivo.

1.6. Justificación

Actualmente en el Perú vivimos una dependencia tecnológica preocupante. Es así que, un abrumador porcentaje de nuestra producción interna y de nuestras exportaciones se basan en la explotación de recursos naturales, como se puede observar en la Figura 1.1. La misma nos indica que nuestro país esta todavía en un muy incipiente estado de desarrollo tecnológico. Esto trae como consecuencia, una falta de diversidad en el sector productivo y que se ve altamente vulnerable a posibles crisis económicas. Es así que, se produce un ciclo vicioso, donde el sector productivo no invierte en el desarrollo tecnológico y esa falta de inversión produce una vulnerabilidad muy grande que limita la capacidad de decisión hacia sectores que diversifiquen la oferta tecnológica.

Figura 1.1. Evolución de las exportaciones de bienes, en base a su intensidad tecnológica (según clasificación de productos de Lall) (Millones de USD): 1995-2009.
Fuente: (Palomino de la Gala y cols., 2016), Examen de las Políticas de Ciencia, Tecnología e Innovación. Perú.

Es de urgencia que se apliquen múltiples esfuerzos desde todos los sectores de nuestra sociedad para aumentar las capacidades tecnológicas. Uno de los sectores llamados a proponer soluciones, es la academia o el sector universitario. En el caso de nuestra universidad, se puede contribuir en las temáticas relacionadas a nuestras carreras profesionales. Una de estas áreas de actualidad, son las comunicaciones móviles de quinta generación. Al ser la quinta iteración de dicha tecnología, se le considera ya en un estado de completa maduración. Es así que, muchas etapas propuestas en los estándares de dichos sistemas ya presentan un nivel de complejidad bastante elevado. Lo que implica la necesidad de utilizar recursos tecnológicos y herramientas muy especializas, costosa y escasas en nuestro país. Una de las áreas de estos sistemas es el desarrollo de antenas para cumplir con los requisitos de 5G. El desarrollo implica etapas de diseño, fabricación, optimización, validación y test de los prototipos. En la presente tesis nos enfocaremos en la etapa de optimización de los prototipos diseñados. La optimización es un proceso iterativo que implica la utilización de recursos computacionales, que por lo general son limitados en nuestro país.

CAPITULO II: MARCO TEÓRICO

2.1. Antecedentes

El trabajo realizado por (Shao y cols., 2020). que tiene como titulo: "Design of wideband differentially fed multilayer stacked patch antennas based on bat algorithm". En dicho trabajo se presenta una comparación entre los algoritmos PSO, Genético y Murciélago. Donde se puede apreciar que para la antena de patchs apilados, la función objetivo del algoritmo de murciélago llega a valores mas bajos en menos iteración comparado con los otros algoritmos. Dicha comparación resulta muy interesante para la presente tesis, debido a que también se hará una comparación de los mismos algoritmos de optimización. A diferencia de dicha comparación, en la presente tesis se desea establecer si las mejores prestaciones del algoritmo Bat, son ligadas al tipo de antena usada en dicho trabajo, o si es independiente de la geometría de la antena. Por otro, en la presente tesis se han utilizado 8 variables para el diseño y optimización con el algoritmo, en comparación a las 7 usadas en el articulo citado. Considerando además que las funciones objetivos son diferentes e independientes para cada parámetro de antena.

El trabajo realizado por (Arce Casas, 2008) que tiene como titulo: "Síntesis de agrupaciones de antenas por medio de optimización estocástica". En este trabajo de maestría se optimiza el diagrama de radiación de agrupaciones lineales utilizando el algoritmo genético y PSO. Se utiliza tres ecuaciones objetivos, comenzando por una sencilla hasta una mas compleja para comparar dichos algoritmos. En el primer problema, el tiempo de optimización para el algoritmo genético y PSO fue de 10.286 segundos y 7.995 segundos respectivamente, en el segundo problema fue de 176.638 segundos para el genético y 83.076 segundos para el PSO, por último, en el tercer problema el PSO lo optimizó en 466.9157 segundos y el genético en 943.265 segundos. El algoritmo PSO tiene una mayor rapidez de convergencia respecto al genético. En el presente trabajo se optimizará el ancho del haz a media potencia (HPBW) para phi=0° y phi=90° centrado a 0°.

El trabajo realizado por (Silva, 2013) que tiene como titulo: "Optimización del diseño de

antenas Yagi-Uda usando Algoritmos Genéticos". En este trabajo adapta el algoritmo genético para optimizar el desempeño de una antena yagi. Su función objetivo utiliza la directividad y la relación frontal-trasera que lo obtiene por la formulación matemática del método de los momentos. También, utiliza una población de 20 individuos ya que al aumentar la población no había mejoras. Para la selección de los mejores resultado utiliza el método de la competencia, es decir, escoge aleatoriamente los individuos y lo comparara por su peso con su valor objetivo ganando el que se acerca mas al objetivo. En este trabajo se utilizará el método de la ruleta y etilismo para la selección de los mejores individuos con la misma población de 20.

2.2. Bases teóricas

2.2.1. Parámetros Fundamentales de antena

Definición del concepto de antena

El IEEE (Institute of Electrical and Electronics Engineers) define una antena como "aquella parte de un sistema transmisor o receptor diseñada específicamente para radiar o recibir ondas electromagnéticas" ("IEEE Standard Definitions of Terms for Antennas", 1983).

Coeficiente de reflexión

Se define como la razón de la onda de tensión reflejada V_o^- normalizada respecto a la amplitud de la onda de tensión incidente V_o^+ . La tensión está relacionada con la impedancia de la carga, por lo que el coeficiente de reflexión puede ser expresado por la impedancia de carga Z_L y la impedancia de la linea de transmisión Z_0 (Pozar, 2011).

$$\Gamma = \frac{V_o^-}{V_o^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$
(2.1)

Parámetros S

La matriz de dispersión proporciona información de la amplitud de la onda de voltaje incidente V_i^+ respecto a la onda de voltaje reflejada V_i^- como indica la Ec. 2.2.

$$\begin{bmatrix} V_1^- \\ V_2^- \\ \vdots \\ V_N^- \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1N} \\ S_{21} & & \vdots \\ S_{N1} & \cdots & S_{NN} \\ \vdots & & & \end{bmatrix} \begin{bmatrix} V_1^+ \\ V_2^+ \\ \vdots \\ V_N^+ \end{bmatrix}$$
(2.2)

Un elemento S_{ij} , si no se recibe en ningún puerto una onda incidente, se define como la relación de la amplitud de la onda de tensión reflejada V_i^- en el puerto *i* sobre la onda de tensión incidente V_i^+ desde el puerto *j* (Pozar, 2011).

$$S_{ij} = \frac{V_i^-}{V_j^+} \bigg|_{V_k^+ = 0 \ para \ k \neq j}$$
(2.3)

Directividad

Se define como la relación entre la intensidad de la radiación en una cierta dirección y la densidad media que radiaría a la misma distancia una antena isotrópica, es decir, en todas las direcciones. Donde P_t es la potencia transmitida (Stutzman y Thiele, 2012).

$$D(\theta,\varphi) = \frac{\phi(\theta,\varphi)}{P_t/(4\pi d^2)}$$
(2.4)

Ganancia

Se define como la relación entre la intensidad de la radiación en una cierta dirección y la densidad media que radiaría a la misma distancia una antena isotrópica, incluyendo las pérdidas de potencia en los materiales que componen la antena. La ganancia máxima no toma en cuenta la dirección angular como se muestra en la Ec. 2.5 (Markus Voelter, 2003).

$$D = \frac{\phi_{max}}{Pt/(4\pi d^2)} \tag{2.5}$$

Figura 2.1. Patrón de radiación 3D en el campo lejano Far-field Fuente: Elaboración propia

Ancho de banda (BW)

Es el rango de frecuencias sobre la cual la antena cumple un estándar especifico. Usualmente el rango de frecuencias se considera a partir donde la curva es menor a -10dB como se muestra en la Figura 2.2. El BW se considera del punto 1 hasta el punto 2.

Figura 2.2. Ancho de Banda BW Fuente: Elaboración propia

Polarización

La polarización es definida por la dirección del vector del campo eléctrico radiado ("IEEE Standard Definitions of Terms for Antennas", 1983). Las definiciones de Ludwig se muestran en la Figura 2.3 En la primera definición, el vector del campo eléctrico se proyecta sobre los ejes x e y que se encuentran en el plano. La segunda definición, utiliza los vectores unitarios esféricos, tangentes a una superficie esférica, que se utilizan para representar las direcciones de los vectores unitarios con la excepción de las dos direcciones singulares a lo largo del eje Y como eje polar. Por último, en la tercera definición, los vectores unitarios pueden obtenerse girando los vectores unitarios en torno a la dirección radial por un ángulo φ (Aboserwal y cols., 2018).

Figura 2.3. Las tres definiciones de la polarización de Ludwig Fuente: (Aboserwal y cols., 2018)

Ancho de Haz

Conocido por sus siglas HPBW (Half Power Beamdwidth), es la separación angular donde el haz principal del patrón de potencia es igual a la mitad del valor máximo, siendo -3dB en ambos extremos del valor máximo del haz principal.

$$HPBW = |\theta_{HPBW \ left} - \theta_{HPBW \ right}|$$
(2.6)

$$E = jw\sin\theta A_z\hat{\theta} \tag{2.7}$$

Figura 2.4. Ancho de haz de media potencia Fuente: (Stutzman y Thiele, 2012)

HPBW se origina de la proyección del elemento de la corriente en la dirección θ de la ecuación 2.7. En diseño de antenas se analiza $Phi = 0^{\circ}$ y $Phi = 90^{\circ}$ siendo la vista final de una corriente infinitesimal Figura 2.5.a) y la longitud máxima de la corriente Figura 2.5.b) (Stutzman y Thiele, 2012).

Figura 2.5. a) Diagrama polar en $Phi = 0^{\circ}$. b) Diagrama polar en $Phi = 90^{\circ}$ Fuente: Elaboración propia

2.2.2. Tipos de antenas

Antena Dipolo

Una antena dipolo tiene dos brazos radiantes simétricos, compuesto por dos cables rígidos o dos varillas metálica lineal con un punto de alimentación en el centro, como se observa en la Figura 2.6.a). Debido a su compleja fabricación se usa la antena monopolo que tiene un solo brazo radiante, como se visualiza en la Figura 2.6.b). Los monopolos se utilizan sobre un plano de tierra total o parcial. Las reflexiones del plano de tierra producen un monopolo virtual por debajo del suelo, por lo que una antena monopolo sobre un plano de tierra perfecto puede ser evaluarse de la misma manera que una antena dipolo, como se observa en la Figura 2.6.c). Las antenas dipolo y monopolo se utilizaron a comienzos del siglo XXI en teléfonos inalámbricos y celulares (Balanis, 2008).

Figura 2.6. a) Antena dipolo. b) Antena monopolo. c) Antena monopolo sobre un plano de tierra mostrando la fuente virtual por debajo. Fuente: (Balanis, 2008)

Antena Reflectora

Las antenas reflectoras surgieron en la astronomía óptica y para maximizar la señal en una sola dirección. Su geometría consiste de un reflector parabólico con un punto focal para recibir toda la señal reflejada. Son usadas en aplicaciones de comunicaciones y radares desde mediados del siglo XX. En la actualidad se ven en torres para enlaces de telecomunicaciones punto a punto, en casas para la televisión y en comunicaciones de satélites espaciales (Z.-N. Chen, Liu, Nakano, Qing, y Zwick, 2016), como se observa en la Figura 2.7.

Figura 2.7. Antena reflectora en Australia Fuente: (Z.-N. Chen y cols., 2016)

Antena Microstrip

La geometría de una antena de parche microstrip (MPA) consiste en un parche metálico impreso en un sustrato conectado a tierra en su reverso. La forma del parche puede ser arbitraria. En la práctica, el rectángulo y el círculo son formas comunes. La antena suele estar alimentada por una línea de contacto, como se puede observar en la Figura 2.8.a) o por una sonda coaxial, como se muestra en la Figura 2.8.b). En la línea de contacto, la energía se acopla al parche de varias maneras: por conexión directa, por acoplamiento de proximidad y por acoplamiento de apertura. La antena de parche surge a mitad del siglo XX pero comenzó a usarse a fines del siglo XX por su ventajas, entre las que se encuentra, su bajo costo, la adaptabilidad a una superficie con forma, la facilidad de fabricación y la compatibilidad con la tecnología de circuitos integrados (Z.-N. Chen y cols., 2016).

2.2.3. Arreglos de antenas

Los arreglos de antenas se usan para obtener el patrón de radiación directivo, alta ganancia y el direccionamiento de haz, como se puede visualizar en la Figura 2.8.a). Debido a sus beneficios son utilizados en la ingeniería de antenas y electromagnética. Los arreglos están conformados por elementos de antenas idénticos, siendo mas utilizado en antenas microstrip, como se puede observa en la Figura 2.8.b). Estos sistemas usan por lo general, métodos complejos de alimentación para cada elemento como los lentes de Rotman. Estos lentes sirven para generar diferencias de fase especificas a cada linea dentro de un arreglo de elementos seriales.

Figura 2.8. a) Antena microstrip cuadrada. b) Antena microstrip circular. Fuente: Elaboración propia

- Arreglo lineal: se ubican a lo largo de una linea recta los elementos de la antena.
- Arreglo planar: los elementos de la antena se distribuyen en un plano.
- Arreglo de volumen: la distribución de los elementos de la antena es tridimensional.

Los arreglos lineales es la base para todos los arreglos de antenas y su metodología de diseño puede aplicarse en varios tipos de arreglos (Weng, Yang, y Elsherbeni, 2007).

Figura 2.9. (a) Los ocho posibles patrones de haz de del arreglo generados al activar uno de los puertos de lente de Rotman. (b) Arreglo de antena 8x8 con la formación de haz de lente de Rotman. Fuente: (Remcom, 2019)

Beamforming

El principio básico del beamforming consiste en controlar la fase relativa entre los elementos de la antena para direccionar el patrón de haz, como se muestra en la Figura 2.10.a). La generación de dos o más haces desde el mismo arreglo de antenas suele ser ventajosa en comparación con el barrido de un solo haz. La velocidad de datos se incrementa cuando hay varios haces con diferentes canales de frecuencia. El arreglo de antena utiliza la matriz Butler para alimentar directamente a los elementos para crea variaciones de fase lineales entre los elementos radiantes, como se puede observar en la Figura 2.10.b). Una matriz Butler de M×M puertos puede utilizarse para excitar M modos de fase independientes, ya que de lo contrario una señal alimentada a un puerto se irradiará en más de un haz. Cada haz irradia un patrón de amplitud omnidireccional, pero con diferentes variaciones de fase con el ángulo (Josefsson y Persson, 2006).

Figura 2.10. (a) 8 haces ortogonales. (b) Matriz de Butler 8x8. Fuente: (Balanis y Ioannides, 2007) (Josefsson y Persson, 2006)

2.2.4. Algoritmos de optimización

Un algoritmo es un procedimiento de instrucciones que siguen pasos o etapas que implican cálculos matemáticos. Los pasos y procedimientos dependen del algoritmo utilizado y del contexto de interés. Los algoritmos de optimización siguen procedimientos de búsqueda eficientes, obteniendo resultados diferentes pero no lejanos en cada simulación, es decir, es metaheurístico. Por su naturaleza iterativa, son usados en muchas aplicaciones, como la robótica (Gao, Wang, Gao, y Cheng, 2021), los diseños industriales (Feng, Zhang, Han, Kang, y Wang, 2020) y la ingeniería (Dong y cols., 2019). Los objetivos de la optimización son de dos tipos: minimizar y/o maximizar parámetros dentro de un problema multivariable. Por ejemplo, se pueden usar para minimizar los costos de producción y/o maximizar la eficiencia de un sistema. Muchas variables como los recursos computacionales, el tiempo, el dinero, la eficiencia, ancho de banda son generalmente limitados o escasos en las aplicaciones de ingeniería. Debido a eso, se tiene que encontrar soluciones para utilizar de forma óptima estos valiosos recursos bajo diversas restricciones. Los algoritmos de optimización tratan de solucionar estos problemas mediante herramientas matemáticas (Yang, 2020). En la presente tesis se usaran las herramientas que imitan algunos comportamientos de animales. Es así, que en la literatura se encuentran varios algoritmos de optimización bio-inspirado, como los que describimos a continuación.

- El algoritmo de la luciérnaga (FA): Este algoritmo fue desarrollado por Xin-She Yang (Yang, 2010a). El algoritmo se inspira en los patrones de iluminación intermitente producidos por las luciérnagas. Estas producen una luz generada químicamente desde su estómago inferior. La bio-luminiscencia con patrones de parpadeo se utiliza para permitir la comunicación entre dos insectos adyacentes en busca de presas y también para encontrar pareja. El FA se aplica en análisis de imágenes digitales y puede tratar problemas de optimización multimodal no lineales de forma efectiva y natural (Dey, 2020).
- El algoritmo salto de ranas combinado (SFLA): Se inspira en las ranas que buscan comida en un estanque sobre piedras. El SFLA es una conocida técnica de optimización basada en reglas metaheurísticas propuesto por Eusuff y Lansey (Eusuff y Lansey, 2003). Combina el algoritmo memético y la PSO siendo muy popular. Además, su simplicidad y la alta velocidad de convergencia, hacen del SFLA un eficiente optimizador global. La población del algoritmo está compuesta por un conjunto de ranas donde cada una indica una posible solución al problema definido. SFLA se aplica en máquinas eléctricas permitiendo la medición e identificación de parámetros. (Moayedi, Bui, y Thi Ngo, 2020)
- El algoritmo búsqueda de cuco (CS): Desarrollado en 2009 por Xin-She Yang y Suash Deb (Yang y Deb, 2009). El algoritmo metaheurístico se basa en el parasitismo de las crías de algunas especies de cucos. Los cucos ponen sus huevos en nidos comunales y pueden quitar los de otros para aumentar la probabilidad de eclosión de sus huevos. El algoritmo consiste en poner un huevo a la vez y depositarlo en un ni-

do elegido al azar; cada huevo en un nido representa una solución, y cada cuco puede poner sólo un huevo. El objetivo es utilizar las nuevas y mejores soluciones para reemplazar una solución no tan buena en los nidos utilizan una combinación equilibrada de un paseo aleatorio local y el paseo aleatorio global. CS se puede aplicar en la colocación de los condensadores, palas de aerogenerador, diseño de estructuras de celosía, estructuras de acero, entre otros (Yang, 2013).

Otros algoritmos utilizan la inteligencia de enjambre para ayudarse colectivamente a la búsqueda de una solución global, como el algoritmo de polinización de las flores inspirado en el proceso de polinización de las plantas con flores (Z. Wang, Xie, He, y Chan, 2019), el algoritmo de la colonia de hormigas simulando el método de búsqueda utilizando el feromona como mensajero químico (Y. Sun, Dong, y Chen, 2017), el algoritmo de forrajeo bacteriano que imita la búsqueda de alimento de las bacterias (Xu y cols., 2020), el algoritmo de colonia de abejas que simula el comportamiento de las abejas en búsqueda de miel (J.-Q. Li y cols., 2020), entre otras.

Incluso con varias ventajas de cada método, estos algoritmos pueden tener algunas restricciones y limitaciones, como seleccionar el número de población e iteraciones. La mayoría de los casos de optimización, se puede encontrar soluciones óptimas rápido y bastante efectivas. Aunque puede ser difícil encontrar la verdadera solución óptima para un problema definido. Por ejemplo, cuando se utiliza algoritmo de la luciérnaga se necesita definir los parámetros iniciales, requiriendo estudios paramétricos o sino puede converger prematuramente. Otro ejemplo son las limitaciones del algoritmo salto de ranas combinado, en cuanto a su población inicial no uniforme y lenta en las últimas iteraciones. Esto, lo puede llevar a quedar atrapado fácilmente en los extremos locales.

2.2.5. Algoritmos utilizados en antenas

En nuestro caso, el problema multivariable es el diseño de una antena de múltiples elementos. Dentro de esta temática podemos encontrar que muchos algoritmos han sido ya utilizados. Por ejemplo, tenemos el algoritmo Cuco (G. Sun y cols., 2018), que su utilizó para un arreglo de antenas circulares concéntricas, obteniendo un nivel de lóbulos laterales maximo de -22,17 dB y una rápida convergencia en comparación con el algoritmo basado en la biogeografía. Por otro lado tenemos el algoritmo de colonia de abejas (L. Wang, Zhang, y Zhang, 2019) que fue utilizado en un arreglo de antenas lineales, obteniendo posiciones óptimas de 50 elementos para minimizar el lóbulo lateral. Por otra parte, el algoritmo de forrajeo bacteriano (F. Li y cols., 2020) se usó para el diseño de un sistema MIMO. Para esto se utilizo un arreglo de antenas lineal, logrando descubrir que cuando el número de celdas es fijo y a medida que aumenta los usuarios, el rendimiento del sistema aumenta significativamente. Además, si todos los usuarios mantienen una tasa de transmisión mínima aceptable, el rendimiento del sistema es mayor.

La técnica de optimización del GA ha sido utilizado en varias áreas de investigación hasta la actualidad. Su potente método de búsqueda global se combina con otros métodos de búsqueda local (Y. Wang y Zhu, 2021) para disminuir el tiempo de optimización. Sus operadores de cruce y mutación mejora la convergencia del óptimo global en otros algoritmos (Dziwiński y Bartczuk, 2020), también, el GA es parte de una etapa de optimización (Rousis, Konstantelos, y Strbac, 2020).

El PSO utiliza el comportamiento de la inteligencia de enjambre permitiendo encontrar mejores soluciones. Se han aplicado con éxito en el campo de investigación asociada a procesos de calidad de red eléctrica (Rodriguez-Guerrero y cols., 2018). Su método del óptimo local y óptimo global se utiliza como híbrido con otros algoritmos para mejorar la optimización y selección de resultados (Kaur y cols., 2021).

El BA explora en un rango definido por el usuario requiriendo poco control. Se aplica en sistemas de energía para evitar la convergencia prematura (H. Liang, Liu, Shen, Li, y Man, 2018), también, para aumentar la capacidad de búsqueda global ampliando el área de explotación de forma hibrida con otros algoritmos (G. Chen, Qian, Zhang, y Sun, 2019).

Siendo estas las razones se implementa el algoritmo GA, PSO y BA en este trabajo de tesis.
2.2.6. Algoritmo murciélago

El método utiliza y simula el comportamiento de los murciélagos, que utilizan el ultrasonidos para detectar obstáculos y localizar presas. Es el segundo mamífero en cantidad de especies a nivel mundial, con más de 1300 especies. Diferenciándose así por su tamaño. Además, es el único mamífero que tiene alas. Los Murciélagos del tipo Microchiroptera son un grupo de pequeños individuos que utilizan una sofisticada ecolocalización para cartografiar el entorno que les rodea, orientarse y encontrar fuentes de alimentos, incluso en la oscuridad total. Emiten un breve pulso de ondas sonoras y luego, al escuchar sus ecos, pueden distinguir las presas de los objetos peligrosos y a los depredadores (Rodríguez-San Pedro, Allendes, Carrasco-Lagos, y Moreno, 2014). En la Figura 2.11 se visualiza su comportamiento con el ultrasonido. Basándose en este comportamiento, Xin-She Yang ha desarrollado un nuevo algoritmo de optimización, denominado Algoritmo del Murciélago BA (Yang, 2010b). El principio de optimización del BA consiste en asignar una población de murciélagos individuales al espacio del problema de N dimensiones y luego simular el proceso de localización para encontrar una solución, que en nuestro caso seria una antena óptima que cumpla con los objetivos requeridos.

Figura 2.11. Ecolocalización de los murciélagos Fuente: Elaboración propia

Si idealizamos algunas de las características de ecolocalización de los Microchiroptera en el algoritmo BA, podemos expresar las siguientes reglas.

1. Todos los murciélagos utilizan la ecolocalización para saber la distancia y la posición.

Un murciélago x_i se considera como una solución al problema de optimización.

- 2. Los murciélagos vuelan aleatoriamente con una velocidad v_i en la posición x_i . Además, pueden variar y ajustar su frecuencia Q_i , el volumen A y la tasa de emisión de pulso r, dependiendo de la cercanía de su objetivo.
- 3. El volumen del pulso varía desde un valor positivo alto A_0 hasta un valor constante mínimo A_{min} y la tasa de emisión de impulsos r varía de un valor constante inferior a un valor valor más alto.

El algoritmo trata cada solución como un murciélago virtual en una población de N individuos. La velocidad de los murciélagos se define como v_i en la posición x_i . También, emiten un sonido con una frecuencia fija Q_{min} , que varía hasta una frecuencia Q_{max} para buscar objetivos. Estas frecuencias se actualizan en cada iteración t (Yang y Gandomi, 2012), utilizando la Ec. 2.8. Cada nueva velocidad v_i^t y posición x_i^t se calculan con las ecuaciones 2.9 y 2.10.

$$Q_i = Q_{min} + (Q_{max} - Q_{min})\beta \tag{2.8}$$

$$v_i^t = v_i^{t-1} + (x_i^t - x^*)Q_i$$
(2.9)

$$x_i^t = x_i^{t-1} + v_i^t (2.10)$$

Donde $\beta \in [0 \ 1]$ es un número aleatorio para una distribución uniforme y x* representa la mejor solución encontrada para la función objetivo entre los murciélagos. Después de actualizar la solución de la función objetivo, la varianza de la posición varía según la proximidad al objetivo por la Ec. 2.11

$$X_{new} = X_{old} + W_B A^t \tag{2.11}$$

Donde A^t denota la media del volumen del pulso de todos los murciélagos en cada iteración y W_B es un (radio vector) aleatorio. En cada iteración, se acepta una nueva solución si la tasa de emisión de pulso aumenta y el volumen del pulso disminuye cuando se acerca al objetivo. El volumen del pulso A_i y la tasa de emisión de pulso r_i se actualizan utilizando la Ecuación. 2.12 y 2.13.

$$A_i^{t+1} = \alpha A_i^t; \tag{2.12}$$

$$r_i^{t+1} = r_0 [1 - \exp\left(-\gamma t\right)] \tag{2.13}$$

Donde r_0 es la frecuencia de pulso inicial bajo la distribución uniforme, α es el factor de atenuación del volumen del pulso y γ es el factor de mejora de la tasa de emisión de pulso. Por lo tanto, la nueva solución para cada iteración se calcula mediante las ecuaciones 2.8 a 2.13.

2.2.7. Algoritmo genético

Son algoritmos metaheurístico basados en la selección y la genética natural, combinando la supervivencia del más apto. Intercambia información aleatoria con otros individuos en la búsqueda de algo innovador. Basándose en este comportamiento, John Holland desarrolló a finales del siglo XX en la Universidad de Michigan el algoritmo genético (GA). El algoritmo consiste en un conjunto de individuos artificiales que intercambia aleatoriamente los genes de los individuos mas aptos por medio del cruzamiento y utiliza el método de la mutación para buscar nuevos puntos de búsqueda con un rendimiento mejorado (Goldberg, 1989).

Población

La población del GA son representadas por cromosomas que contienen genes como se visualiza en la Figura 2.12. Los valores de los genes son generados aleatoriamente pero dichos valores tienen varias representaciones.

Figura 2.12. Partes del individuo Fuente: Elaboración propia

 Representación Binaria: Es representada por valores de 0 ó 1. Es la primera codificación que apareció, siendo muy usada actualmente.

Figura 2.13. Representación Binaria Fuente: Elaboración propia

 Representación Entera: Surgió para codificar los valores binarios en valores decimales de los cromosomas para facilitar los resultados obtenidos en muchos trabajos de optimización.

Figura 2.14. Representación Entera Fuente: Elaboración propia

> Representación Real: Utiliza la codificación entera para limitar los cromosomas en un intervalo de valores [I_{min}, I_{max}]. En la ecuación 2.14 transforma los valores decimales en valores reales, siendo L la longitud del cromosoma.

Figura 2.15. Representación Real Fuente: Elaboración propia

$$C_{real} = (I_{max} - I_{min}) * \frac{C_{entero}}{2^L - 1} + I_{min}$$
(2.14)

Selección

Los individuos más aptos son los que deben reproducirse en cada iteración y crear una nueva descendencia más óptima. Cada individuo pasa por la función objetivo para asignarle un valor, si no cumple con lo requerido se le pone un valor de penalidad (Pn) constante

en cada iteración. Para seleccionar a los individuos para reproducirse se ordena de menor a mayor según el valor obtenido de la función objetivo, los individuos penalizados se ubica en las últimas posiciones. Lo descrito se muestra en la Figura 2.16.

Figura 2.16. Selección de individuos Fuente: Elaboración propia

Mutación

Para mutar un gen de los cromosomas se escoge un método de selección de bit para mutarlo, como ejemplo se escoje el septimo gen del primer cromosoma resaltado en rojo de la Figura 2.17. El método de la ruleta asigna un peso al bit, el peso del bit aumenta del más significativo al menos significativo para cambiarlo de 1 a 0 o viceversa, logrando así que el cambio no sea tan grande. Además, la mutación da diversidad a la población explorando en otro espacio de búsqueda evitando la convergencia prematura de la población. (Whitley, 1994)

Figura 2.17. Mutación de un bit Fuente: Elaboración propia

Cruce

El método de cruce consiste en coger dos padres al azar de una muestra de padres que se acerca al objetivo, de la población total. Se corta sus cromosomas en una posición escogida aleatoriamente, para generar dos partes de cromosomas iniciales y dos partes de cromosomas finales. Se intercambian las dos partes de cromosomas finales, generando dos nuevos cromosomas completos que heredan los genes de sus padres. (Whitley, 1994)

 Cruce de un punto: Este cruce consiste en dividir por un punto al azar el cromosoma para cruzarlo con otro cromosoma dividido por el mismo cruce.

Figura 2.18. Cruce de un punto Fuente: Elaboración propia

 Cruce de dos puntos: Este cruce consiste en dividir por dos punto al azar el cromosoma para cruzarlo con otro cromosoma dividido por el mismo cruce.

Figura 2.19. Cruce de dos puntos Fuente: Elaboración propia

Etilísmo

Cuando se realiza el cruce y la mutación, se puede perder el individuo con mejor valor objetivo. El etilísmo consiste en copiar el mejor individuo para ser utilizado en la siguiente iteración si no se haya generado un individuo mejor.

2.2.8. Algoritmo de optimización del enjambre de partículas

Es un algoritmo estocástico motivado por el enfoque social de los animales que prefieren estar en manadas para buscar alimentos y/o escapar de depredadores. Fue propuesto por Kennedy en 1995 (Kennedy y Eberhart, 1995) dándole el nombre de optimización del enjambre de partículas (PSO). El PSO inicia con un tamaño fijo de partículas y cada partícula es una posible solución potencial en un espacio de búsqueda. El algoritmo es la suma de tres vectores como se muestra en la Figura 2.20. La partícula esta influenciado por su mejor posición local y global.

Figura 2.20. Movimiento de las partículas Fuente: Elaboración propia

La posición puede representarse como un vector. La velocidad v_i de la partícula esta representada por los vectores *inercia*, *cognitivo* y *social* como se representa en la ecuación 2.15. La posición x_i de la partícula y la velocidad v_i se calculan con las ecuaciones 2.16 y 2.17.

$$v_i^{t+1} = inercia + cognitivo + social \tag{2.15}$$

$$v_i^{t+1} = W * v_i^t + C_1 * rand * (P_{best_i}^t - x_i^t) + C_2 * rand * (G_{best}^t - x_i^t)$$
(2.16)

$$x_i^{t+1} = x_i^t + \triangle t * v_i^{t+1} \tag{2.17}$$

Donde $rand \in [0 \ 1]$ es un número aleatorio para una distribución uniforme. C_1 y C_2 son factores de corrección. P_{best_i} es la mejor posición local, G_{best_i} es la mejor posición global, x_i es la posición actual. W es peso de la inercia que se utiliza para obtener un equilibrio entre la exploración global y la explotación local (Mercangöz, 2021).

A pesar de la versatilidad y flexibilidad, el PSO se atasca en los mínimos locales durante la búsqueda de la solución. Los investigadores se han esforzado por mejorar el PSO presentando nuevas variables de la fórmula para regular y controlar el proceso de búsqueda óptima. Algunos estudiosos se enfocaron en regular el peso de la inercia haciéndolo, constante (Lin, Wang, y Wang, 2019), oscilantes (N. Kumar y Kumar Sharma, 2018), variable en el tiempo (Ding y You, 2020) y el más conocido es de Clerc (Eberhart y Shi, 2000a) dando mejores resultados.

CAPITULO III: METODOLOGÍA DE LA INVESTIGACIÓN

3.1. Linea de investigación

La presente tesis tiene como linea de investigación Ciencia de la Electrónica, Telecomunicaciones y Tecnología de Información. En el área de investigación de Telecomunicaciones y Automatización, con los temas relacionado a Diseño de Antenas e Inteligencia Artificial.

3.2. Descripción de la metodología

La tesis tiene etapas bien definidas para el desarrollo y cumplimiento de los objetivos específicos. En la Figura 3.1, se puede observar las etapas necesarias para la evaluación comparativa de la eficiencia de los algoritmos de optimización para el diseño de antenas planares. Metodologías similares se han utilizado desde los años 90 y 2000 para la optimización de antenas alámbricas (Altshuler, 2002), patch (Kerkhoff y Ling, 2007), banda ancha (Jin y Rahmat-Samii, 2005), etc. Estos métodos utilizan un algoritmo que se implementa en un lenguaje de programación y se apoya en un simulador electromagnético que se encarga de obtener los parámetros de antena, a partir de las dimensiones geométricas de la misma.

Para el trabajo se extrajo una versión básica del algoritmo murciélago (BAT) (Gupta, 2021), algoritmo de optimización del enjambre de partículas (PSO) (Korani, 2021) y del algoritmo genético (GA) (SeckTuoh, Medina, y Hernandez, 2016) que fueron modificados para el diseño de la antena patch en serie.

Después de adecuar los algoritmos y priorizar los parámetros de antena deseados implementados en el software Matlab, es necesario utilizar un simulador electromagnético. Dicho software permite el cálculo de las ecuaciones de Maxwell de diseños CAD de antenas. El software Matlab se comunica con el simulador electromagnético, dándole la descripción para la construcción de la antena inicial. Al final de la simulación electromagnética, el simulador comercial se comunica devuelta con el software, entregando los resultados de la simulación de la antena para una iteración dada. El Matlab evaluará si los resultados coinciden con los requerimientos deseados. De ser así, se guardan las variables de la antena y los valores de la función objetivo. De no ser el caso, el algoritmo varia las variables de la antena para repetir el proceso para una nueva iteración.

Se repite el proceso con todos los algoritmos implementados para cada antena (BA, GA y PSO). Se guardan el mejor resultados de cada algoritmo en cada iteración, escogiendo al final el mejor resultado cuando concluye la cantidad de iteraciones escogido. El proceso concluye con la comparación del mejor resultado de cada algoritmo.

3.2.1. Función Objetivo

Es una función que indica cuan cercana está la solución obtenida de la solución requerida. Esta utiliza múltiples variables y representa una única figura de mérito. En esta tesis se utiliza una función objetivo con siete variables en donde en cada iteración se busca que su valor llegue lo mas cercano a cero. La ecuación 3.1 permite el cálculo de la función objetivo.

$$F(i)_{objetivo} = P_{1} * (BW_{D} - BW_{Oi}) + P_{2} * (HPBW_{\phi=0}^{Oi} - HPBW_{\phi=0}^{D}) + P_{3} * (HPBW_{\phi=90}^{Oi} - HPBW_{\phi=90}^{D}) + P_{4} * (G_{D} - G_{Oi}) + P_{5} * (\delta \overline{G}_{\theta=1}^{Oi} - \delta \overline{G}_{\theta=1}^{D}) + P_{6} * \angle G_{\phi=90}^{max_{O}i} + P_{7} * \angle G_{\phi=0}^{max_{O}i}$$
(3.1)

Donde: el subíndice O y D el valor obtenido y deseado respectivamente. BW es el ancho de banda, HPBW es el ancho de haz para los planos E y H ($\phi = 0^{\circ}$ y $\phi = 90^{\circ}$), G es la ganancia, $\delta \overline{G}_{\theta=0} = \overline{G}_{\theta=0}^{prom} - G_{max}$, $\angle G^{max_Oi}$ es la desviación de la dirección de la ganancia máxima respecto a $\theta = 0^{\circ}$ para el plano $\phi = 0^{\circ}$ y $\phi = 90^{\circ}$.

En el presente trabajo se desea obtener en algunos requisitos mínimos. Por ejemplo se desea un ancho de banda mínimo de $BW_D = 3GHz$ para abarcar 4 operadoras (GSMA, 2021). Así mismo, se desea que el patrón de radiación presente anchos de haces de $HPBW_{\phi=0}^D = 50^\circ$ y $HPBW_{\phi=90}^D = 8^\circ$ ya que son valores menores a lo establecido en antenas seriales (Farasat, Thalakotuna, Hu, y Yang, 2021). Normalmente en términos de ganancia, en antenas seriales no se llega los 17dBi, por tal motivo se escoge $G_D = 17dBi$. $\delta \overline{G_D}_{\theta=0} = 0.1dBi$ para lograr que la diferencia sea lo mas cercado a la ganancia máxima y por último, se elige valores $\angle G_{\phi}^{max_Oi} \leq 3^\circ$ para evitar desalinearnos.

En la tesis se usará una única función objetivo, sin embargo, los pesos Pi variaran según sea el caso del análisis.

Prioridad G

Para dar prioridad a G se escoge $P_1 = 0.3$ para que el BW sea no sea prioritario. $P_2 = 0.2$ y $P_3 = 0.1$ son menores para que la función objetivo disminuya rápido cuando se encuentre ancho de haz pequeño. $P_4 = 0.25$ permite que la ganancia no impacte tanto en los demás parámetros que son mas complicado en optimizar. Los pesos restantes $P_5 = 0.05$, $P_6 = 0.08$ y $P_7 = 0.02$ serán constantes en ambos casos por no ser parámetros que se requiere como prioridad.

Prioridad BW

En el caso de dar prioridad al ancho de banda BW, $P_1 = 0.1$ será pequeño para quedarse con los valores altos. $P_2 = 0.3$ y $P_3 = 0.25$ se aumenta en referencia al caso anterior por no ser prioritarios. $P_4 = 0.2$ es 0.5 menor a la prioridad G para que la función objetivo disminuya porque encontrar un gran BW es muy complicado. $P_5 = 0.05$, $P_6 = 0.08$ y $P_7 = 0.02$ es igual al caso anterior. En los dos casos mencionados la sumatoria $\sum_{i=1}^{7} P_i$ será igual a 1. Con dichas prioridades, el establecimiento de la función objetivo cumple el primer objetivo especifico de la presente tesis.

3.2.2. Descripción de la antena de referencia

La geometría de la antena comprende un conjunto de 8 antenas parche cuadrado conectadas en serie por una linea de transmisión microstrip. Los parches se colocan en la cara superior del sustrato y el plano de tierra en la cara opuesta, como se visualiza en la Fig 3.2 y Fig 3.3.

Figura 3.2. Vista en perspectiva de la antena con puerto de onda completa Fuente: Elaboración propia

Para el diseño de la antena se utiliza como referencia el trabajo de Remcom, los valores del sustrato y corte de muesca son utilizados en esta tesis. La antena utiliza un sustrato de Teflón con permitividad relativa $\epsilon_r = 2.2$ y $tan\delta = 0,001$ (Remcom, 2019). Este tiene un espesor h = 0.508 mm y con un área de $D \times D$ cm². El largo D de la antena se define mediante la ecuación 3.2, ya que su dimensión final depende de las variables calculadas por los algoritmos.

$$D = \sum_{i=1}^{4} (W_i + l_i) + 2L$$
(3.2)

Figura 3.3. Antena 8-PSA Fuente: Elaboración propia

Cada linea de conexión de los parches, tiene un ancho de W=1 mm. Los siete primeros parches son de forma cuadrada y el último parche de la antena tiene una muesca de 0,6269 mm x 2,727 mm en el lado de la conexión (Remcom, 2019) como se muestra en la Fig 3.4. En los primeros siete parches se provoca un comportamiento de onda constante, es decir que se encuentra en fase. Mientras que el octavo elemento es diferente para generar comportamiento de onda móvil debido a que se empareja mediante una técnica de alimentación por inserción (Kamran, Abd Rahman, Yamada, y Sakakibara, 2017). Esto se debe al efecto combinado de la alimentación insertada y el parche para irradiar eficazmente la potencia máxima que llega al último elemento.

Como ya se mencionó, la antena utiliza un sustrato de $\varepsilon_r = 2.2$ y $tan\delta = 0.001$ y es alimentada por un puerto de onda completa a través de una linea de transmisión. El ancho de la linea W es calculado por la Ec 3.3. Luego es necesario el cálculo de la permitividad eléctrica efectiva ε_{ref} y se calcula con la Ec 3.4. Esto se debe a que las lineas de campo eléctrico E atraviesa por una combinación de dos medios: el aire y el teflón. Por lo tanto,

Figura 3.4. Muesca en la 8 placa Fuente: Elaboración propia

para su modelamiento es necesario considerar una permitivad equivalente o efectiva ε_{ref} . En el análisis de la trayectoria de la corriente eléctrica, los efectos de borde que se producen en los limites de la metalización se toman en cuenta considerando una variación virtual de longitud del parche o ΔL . Esta variación de la longitud ΔL se calcula con Ec 3.5. Finalmente la longitud real L necesaria para producir una resonancia en una frecuencia deseada se calcula mediante la Ec 3.6.

$$W = \frac{1}{2f_r \sqrt{\mu_o \varepsilon_o}} \sqrt{\frac{2}{\varepsilon_r + 1}} = \frac{c}{2f_r} \sqrt{\frac{2}{\varepsilon_r + 1}}$$
(3.3)

$$\epsilon_{ref} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r + 1}{2} [1 + 12\frac{h}{W}]^{-\frac{1}{2}}$$
(3.4)

$$\Delta L = 0.412h \frac{(\varepsilon_{ref} + 0.3)(\frac{W}{h} + 0.264)}{(\varepsilon_{ref} - 0.258)(\frac{W}{h} + 0.8)}$$
(3.5)

$$L = \frac{1}{2f_r \sqrt{\varepsilon_{ref}} \sqrt{\mu_o \varepsilon_o}} - 2\Delta L \tag{3.6}$$

Donde: f_r es la frecuencia de operación, μ_o es la permeabilidad del espacio libre, ε_o es la permitividad del vacío, ε_r es la permitividad eléctrica del substrato, c es la velocidad de la luz en el espacio libre, h la altura del sustrato y ΔL es la variación de la longitud. Lo descrito arriba es el método analítico para hallar W conociendo ε_r . Para este caso, se calculó las dimensiones de la linea de trasmisión y se obtuvo W = 1,53 mm y L = 3,94 mm.

El método descrito corresponde a un procedimiento analítico basado en lineas de transmisión. Dicho método, a pesar de ser muy preciso no es apropiado para este caso, la optimización de dicho método para la geometría en estudio, puede ser tema de otro trabajo de investigación. Sin embargo, en la presente tesis nos enfocaremos en optimizar los resultados usando el método de onda completa, proporcionado por los simuladores comerciales. Para la optimización de la antena de parches serial, se utiliza 8 variables de las dimensiones geométricas en la antena. La Tabla 3.1 describen las longitud de cada antena patch con su respectiva variable y en la Fig 3.3 se muestra la geometría de la antena con la ubicación de las 8 variables.

2	ia aniena	
	Variables	Descripción
	W_1	Longitud del 1 y 8 parche
	W_2	Longitud del 2 y 7 parche
	W_3	Longitud del 3 y 6 parche
	W_4	Longitud del 4 y 5 parche
	L_1	Distancia entre parches 1 y 2, también 7 y 8
	L_2	Distancia entre parches 2 y 3, también 6 y 7
	L_3	Distancia entre parches 3 y 4, también 5 y 6
	L_4	Distancia entre parches 4 y 5

Tabla 3.1 Dimensiones de la antena

En la Fig. 3.5 se detalla el procedimiento de la obtención de los parámetros con su evaluación en la función objetivo. Primero se establece las dimensiones geométricas (8 variables) iniciales utilizando una rutina en Matlab para obtener la geometría de la antena. Luego dicha geometría se envía por macros al simulador electromagnético donde se construye la antena en 3D y después de una simulación se obtiene los resultados de siete parámetros característicos de antena. Por último, los valores de los parámetros son procesados en Matlab para su evaluación en la función objetivo.

Caso inicial

Para una comparación efectiva de los tres algoritmos (BA, PSO, GA) se estableció 20 antenas iniciales que serán utilizados en dos casos; uno donde se da prioridad a BW y otro donde se prioriza G. Cada una de las 20 antenas utiliza 8 dimensiones que fueron generadas aleatoriamente, donde el valor de L y W se encuentra en el rango de [3-5]. Estos valores son utilizados en los tres algoritmos como caso inicial, con el objetivo de que dichos algoritmos empiecen con los mismos valores de la función objetivo para hacer posible una comparación.

Figura 3.5. Mejorar la grafica Fuente: Elaboración propia

Los valores aleatorios se detalla en la tabla3.3. En la última fila de dicha tabla se muestra la variación de cada variable, acercándose a los limites establecidos.

Las antenas fueron simuladas en el software para obtener sus parámetros de antena y con Matlab se calcula el valor de la función objetivo siguiendo el diagrama de bloques de la Fig. 3.5. Con cada antena, la primera condición que debe cumplir es encontrar un mínimo ancho de banda. Para esto se evalúa el coeficiente de reflexión que se obtiene en el simulador a través del parámetro $|S_{11}|$ en dB, y este debe ser menor a -10dB. Por consiguiente, el ancho de banda, se define en un rango de frecuencias de f_{min}^D a f_{max}^D donde el parámetro $|S_{11}|$ este por debajo de $|S_{11}^{\min}|$ =-10 dB. En otras palabras, la antena debe operar dentro de dicho rango de frecuencias deseado $\in [f_{min}^D, f_{max}^D]$. Para los efectos de estas optimizaciones usamos la banda N261 definida por la comisión federal de comunicaciones de Estados Unidos o FCC que regula el espectro de comunicaciones móviles de 5G (3GPP, 2021). La banda mencionada abarca las frecuencias de 27.5 GHz hasta 28.25 GHz. Para nuestro algoritmo, solo se acepta una nueva solución si la curva de $|S_{11}|$ es menor que -10 dB en la región [27.8,28.2] GHz. Caso contrario se descarta el valor de la dimensión. Además, se genera otras dimensiones aleatoriamente obviando las condiciones posteriores y se asigna un valor de penalidad a la función objetivo de $F(x_i) = 25$, para indicar que la solución obtenida esta muy lejos de los deseado.

Una vez cumplida la primera condición, se procede a evaluar la segunda, la cual consiste en analizar el parámetro $\angle G_{\phi=0}^{max_Oi}$ y $\angle G_{\phi=90}^{max_Oi}$ que debe ser como máximo 3 grados para que se acepte el valor de $HPBW_{\phi=0}$ y $HPBW_{\phi=90}$, que son obtenidos del simulador, caso contrario se le asigna un valor de penalidad a $HPBW_{\phi=0} = 90$ y $HPBW_{\phi=0} = 50$, similar a la primera condición.

La tercera condición analiza el parámetro \overline{G} , si el valor de $\overline{G} \notin [0 \ 1]$ se le asigna una penalidad con el valor de $\overline{G} = 1$. Los valores de las penalidades son altos, con el fin de que el valor de la función objetivo se eleve y la antena pueda ser cambiada con facilidad en la siguiente iteración. Dicho análisis de los parámetros se describe en el pseudo código mostrado en la Tabla 3.2 y será utilizado en los tres algoritmos. Una vez satisfechas todas las condiciones requeridas para los parámetros, se procede a evaluar los siete parámetros en la función objetivo utilizando la Eq. 3.1.

Tabla 3.2

1 Schub courso act unalisis de los parametros	Pseudo	código	del	análisis	de l	los	parámetros
---	--------	--------	-----	----------	------	-----	------------

Pseudo código del análisis de los parámetros
if $(S_{11} < -10_{dB})$ y $(27, 8_{GHz} \le S_{11} \le 28, 2_{GHz})$
if $(AG_{Phi^0} \leq 3^\circ)$
Acepta el valor de $HPBW_{\phi=0}$ del simulador
else
Se asigna $HPBW_{\phi=0} = 90$
end if
if $(AG_{Phi^{90}} \leq 3^{\circ})$
Acepta el valor de $HPBW_{\phi=90}$ del simulador
else
Se asigna $HPBW_{\phi=90} = 50$
end if
if $(0 \le \overline{G} \le 1)$
Acepta el valor de \overline{G}
else
Se asigna $\overline{G} = 1$
end if
Evalúa la función objetivo [ecuación 3.1]
end if

El valor de la función objetivo de las 20 antenas iniciales se muestra en la Tabla3.4 para las dos prioridades: ancho de banda y ganancia. También, las 20 antenas iniciales, solo el 15 % cumple la condición del BW. En la tabla mencionada anteriormente, en la fila Ant_4 el valor 22.888 y 13.674 se tomará como valor inicial de la función objetivo en el caso de prioridad BW y G, respectivamente, para los tres algoritmos.

		L_4	3.2684	3.0045	4.0748	4.6944	3.705	3.5156	3.6502	4.4047	4.5664	4.8137	3.405	4.0887	3.5722	4.1462	4.7169	4.9267	4.4187	3.1312	3.4105	3.9092	[3.00 - 4.92]
		L_3	3.2769	4.6681	3.7283	3.7122	3.3596	3.2418	4.48442	3.8345	3.9684	3.0396	4.094	4.4702	4.6007	4.0125	4.6657	4.8415	3.3576	3.9466	4.0943	3.3081	[3.03 - 4.84]
NAS		L_2	4.6939	3.4042	3.7291	4.7241	3.9332	4.1233	4.7458	4.1844	3.5563	4.9827	4.22	3.2273	3.7951	4.7352	3.782	4.7659	3.8156	3.5516	3.2152	4.1282	[3.21 - 4.98]
E LAS ANTEI	siones	L_1	4.4342	3.9123	3.398	4.2229	3.8981	3.7978	4.1149	3.9171	4.9942	4.4728	4.3178	3.9731	4.6768	3.6051	4.4027	4.3651	3.4985	3.6275	3.36	3.196	[3.19 - 4.99]
INICIALES D	Dimen	W_4	4.7328	4.70613	3.9704	4.0841	3.7438	3.6051	4.2024	3.147	3.6959	4.2265	3.7696	3.6996	4.1708	4.6869	3.8219	3.1944	4.6156	3.1784	4.9746	4.1473	[3.14 - 4.97]
MENSIONE		W_3	4.6848	3.5693	3.0387	3.0053	4.1145	4.8699	3.9738	3.0019	4.6403	3.6403	4.6194	3.2284	3.8918	4.6401	3.3229	3.953	4.9783	4.2388	4.4824	4.4283	[3.00 - 4.97]
D		W_2	4.1803	3.9362	4.1419	3.1586	3.2658	4.7279	3.3988	3.952	4.6131	3.5035	4.1732	4.47336	4.0111	4.0705	4.7728	3.5458	3.5135	3.5238	4.0755	3.1045	[3.10 - 4.77]
		W_1	3.9128	3.7779	3.7466	3.8268	4.5164	4.9678	4.8324	4.256	3.1049	3.9569	3.965	4.1429	3.4591	3.9052	3.5691	3.5703	3.1055	3.4597	4.5611	4.2994	[3.10 - 4.96]
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	Variación

Tabla 3.3 Dimensiones iniciales de las antenas

	Prioridad G	F(x)	25	25	25	13.6742	25	25	25	25	14.4152	25	25	25	25	25	25	25	25	25	25	14.9525	15
	Prioridad BW	F(x)	25	25	25	22.888	25	25	25	25	23.5109	25	25	25	25	25	25	25	25	25	25	24.0923	15
NTENAS		$\angle G^{maxoi}_{\phi=0}$	33	1	1	18	16	16	4	1	1	17	1	67	1	1	29	36	37	1	4	64	40
DE LAS A		$\angle G^{max_Oi}_{\phi=90}$	19	13	4	10	7	16	16	9	16	16	17	6	17	21	17	16	15		15	6	5
INICIALES	ros	$HPBW_{\phi=0}$	90	73	71	90	06	90	90	77	90	60	97	90	37	69	90	90	90	71	90	60	35
ARÁMETROS	Parámet	$HPBW_{\phi=90}$	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	6	50	50	5
P		$\delta \overline{G}_{\theta=1}$	1	0.7750	0.6087		1	1		-	0.5901	-	-		-		0.3520		0.2341	0.1272	0.1142	1	35
		G	14.3832	14.3394	15.2926	15.1404	14.6810	10.7781	15.2449	15.3519	13.1731	14.8183	14.6163	15.2486	14.6777	14.8753	14.3989	14.5160	11.5460	16.2602	11.9072	13.8414	100
		BW	0	0	0	159	0	0	0	0	60	0	0	0	0	0	0	0	0	0	0	114	15
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	%

Tabla 3.4 Parámetros iniciales de las antenas

Análisis de la obtención del ancho de banda con los parámetros S

Para el análisis del ancho de banda se eligió un solo canal de 5G mmW de 750 MHz al rededor de 28 GHz como requerimiento mínimo. Es así que se extrae los valores de S_{11} del simulador, en el rango de 26.5GHz hasta 29.5GHz. Los valores son transformados en dimensiones de decibelios dB para la representación del coeficiente de reflexión $|S_{11}|_{dB}$ en el eje de ordenada y frecuencia en el eje de la abscisa. Para la obtención del ancho de banda se segmento por regiones siendo 28 GHz el eje central. En la Fig. 3.6 se escoge inicialmente una región de 200 MHz, es decir, se escoge una región de 27,9 GHz hasta 28.1 GHz (amarillo). Si la curva de $|S_{11}|_{dB}$ que esta en la región amarilla es menor a -10dB, se aumenta 100 MHz en ambos extremos siendo la segunda región de 27,8 GHz hasta 28.2 GHz (verde). Si la curva de $|S_{11}|_{dB}$ sigue siendo menor a -10dB se escoge la región celeste de 27,7 GHz hasta 28.3 GHz. Se seguirá expandiendo la región 100 MHz hasta que $|S_{11}|_{dB}$ en cualquier extremo hasta que ya no sea menor a -10dB.

Figura 3.6. Selección de la región para el BW Fuente: Elaboración propia

Se tomó como referencia el resultado de Ant_4 de la Tabla 3.4 para la Fig. 3.6. En dicha figura la curva $|S_{11}|_{dB}$ solo se quedó en la región amarilla debido a que $F_2 = 28.05$ GHz llegó al limite de -10 dB. F_1 toma el valor del límite de la región amarillo, es decir 27.9 GHz. El ancho de banda obtenido es la diferencia de F_2 con F_1 siendo BW = 159MHz.

Figura 3.7. Error en la selección de regiones de BW Fuente: Elaboración propia

El fin de dividir la curva $|S_{11}|_{dB}$ en tramos de frecuencias tiene la finalidad de evitar que inflexiones Inf_i crucen el $|S_{11}|_{dB}$ = -10dB más de una vez obteniendo un BW erróneo. En la Fig. 3.7 se muestra dicho error de la inflexión. Si se escogiera solo la región de 27.4GHz hasta 28.6GHz, escogiendo los puntos extremos (F_1 y F_2) para la obtención del BW se obtendría un BW = 1.2GHz, pero toda la curva no esta por debajo de $|S_{11}|_{dB}$ = -10dB a causa de Inf_1 = -8.37dB.

Figura 3.8. Análisis de inflexiones Fuente: Elaboración propia

El análisis de los segmentos puede evitar los errores producidos por puntos de inflexión que cruzan más de una vez el limite $|S_{11}| = -10$ dB pero no analiza los valores de las inflexiones que se encuentran en el segmento. En la Fig. 3.8 se visualizan las inflexiones (Inf_i) que no cruza el limite -10 dB. La inflexión $Inf_2 = -10.1$ dB cumple la condición del límite pero es un resultado no tan satisfactorio. Para evitar dicho resultado, se agregó a los segmentos el análisis de la inflexiones. Dicho análisis consiste en escoger primero el segmento. Luego en la curva $|S_{11}|$ que se encuentra en el segmento se analiza el valor de cada punto y se guarda los valores de las inflexiones en un vector POS_x . Los valores admitidos de las inflexiones deben ser menores a -10.5 dB. El primer valor de POS_x es el valor de F_1 y el último es F_2 .

Figura 3.9. Selección de región y de inflexiones Fuente: Elaboración propia

Se escogió como referencia el resultado Int_3 de la Tabla6.9 del anexo 2 para la Fig. 3.9. En dicha figura la curva $|S_{11}|_{dB}$ solo se quedó en la región verde de 27.4 GHz hasta 28.6 GHz debido a que $F_1 = 27.469$ GHz llegó al limite de -10 dB. F_1 obtiene el valor del límite de la región, es decir 28.6 GHz. En dicha figura se obtiene dos puntos de inflexiones $Inf_1 =$ -13,83dB y $Inf_2 = -10,76dB$ cumpliendo la condición de ser menor a -10.5 dB. Para la obtención del BW se escoge el vector POS_x y se resta el último valor con el primero obteniendo un BW = 1,131GHz.

Análisis de la obtención de la ganancia máxima

Para la obtención de la ganancia máxima (G_{max}) se debe extraer del simulador electromagnético la matriz que contiene las componentes vectoriales de la ganancia, es decir G^{θ} y G^{ϕ} distribuidas en 3 dimensiones para variaciones de los ángulos $\theta \in [-180^{\circ} - 180^{\circ}]$ y $\phi \in [0^{\circ} - 360^{\circ}]$. Con las componentes de la Ganancia G^{θ} y G^{ϕ} se obtiene la matriz G^{total} conteniendo $\theta \ge \phi$ valores y usando Matlab se escoge el valor máximo de dicha matriz siendo este valor, la ganancia máxima de la antena G_{max} .

Figura 3.10. Ganancia máxima Fuente: Elaboración propia

Con fines ilustrativos se muestra la Fig. 3.10 ya que contiene el resultado de Int_{20} de la Tabla6.5. En dicha figura se gráfica la ganancia $G(\phi = 0^{\circ})$ a lo largo de θ variando de -180° hasta 180°. La ganancia máxima es el punto más alto de la curva siendo $G_{max} = 16,87dB$. Si se escoge ϕ con otro valor, la ganancia máxima será la misma.

Análisis de $\delta \overline{G}_{\theta=1}$

Para obtener el valor de $\delta \overline{G}_{\theta=1}$, primero se extrae del simulador electromagnético la matriz $\theta \ge \phi$ que contiene las componentes vectoriales de la ganancia, es decir, $G^{\theta} \ge G^{\phi}$ para variaciones de los ángulos $\phi \in [(-180^{\circ}) - 180^{\circ}] \ge \theta = 1^{\circ}$. Luego, usando Matlab se extrae el valor máximo $G_{\theta=1^{\circ}}^{max} \ge \theta$ promedio $G_{\theta=1^{\circ}}^{prom}$ de dicha matriz. Por último, la diferencia de dichos valores se obtiene $\delta \overline{G}_{\theta=1}$.

Figura 3.11. Parámetro $\delta \overline{G}_{\theta=1}$ Fuente: Elaboración propia

En la Fig. 3.11, se enmarcó con un recuadro azul los valores de las componentes $\phi \in [(-180^\circ) - 180^\circ]$ y $\theta = 1^\circ$. La región encerrada son los valores de las ganancias para obtener $\delta \overline{G_D}_{\theta=1}$.

Análisis del ángulo de ganancia máxima

Figura 3.12. Ángulo de ganancia máxima Fuente: Elaboración propia

Para la obtención del ángulo $\angle G^{max}$, primero se debe determinar la ganancia máxima, luego determinar a que grado de θ se encuentra dicha ganancia. Si se obtiene el grado negativo de θ , se aplicará su valor absoluto.

En la Fig. 3.12 se grafica el resultado de Ant_9 de la Tabla3.4. Ubicando la ganancia máxima, se determina el ángulo siendo $\angle G^{max} = 15^{\circ}$

Análisis de la obtención ancho de haz

Con los mismos datos obtenidos de la matriz G^{total} de $\theta \ge \phi$ elementos, se debe obtener primero la ganancia máxima G_{max} . Una vez ubicado el valor de G_{max} , se resta 3dB y con este valor obtenido se encuentra en que puntos intercepta con la gráfica de la ganancia. Estas dos interceptaciones permiten ubicar dos valores de θ . Finalmente, para obtener el ancho de haz HPBW, solo se debe restar los dos valores mencionados de θ . Dicho proceso se realiza para los planos $\phi = 0^\circ \ge 0^\circ$

Figura 3.13. Ancho de Haz Fuente: Elaboración propia

En la Fig. 3.13 se grafica el resultado de Int_{20} de la Tabla 6.3. Primero se ubicó G_{max} = 16.4733 dB, se le restó 3dB obteniendo el valor de 13.4733 dB. Se ubicó las dos coordenadas con la abscisa 13.4733 dB siendo $P_1 = (13.4733; -36.1)$ y $P_2 = (13.4733; 35.9)$. Con los dos valores de la ordenadas se resta obteniendo $HPBW_{\phi=0} = 72^{\circ}$.

3.2.3. Implementación y prueba del algoritmo BA en diseño de antena

Antes de dar inicio a la descripción del algoritmo, primero se define el parámetro de prioridad para establecer los pesos de la función objetivo. Para esta implementación del algoritmo, la posición de un murciélago representa las dimensiones de una antena. Usando estas dimensiones geométricas se obtienen los parámetros característicos de una antena a través del simulador electromagnético. El algoritmo se inicia con una población de 20 murciélagos (antenas). Para esto, se define el limite mínimo L_b y máximo U_b de las dimensiones, el valor de la frecuencia mínima Q_{min} , frecuencia máxima Q_{max} , frecuencia inicial Q_0 , volumen del pulso A, velocidad inicial v_0 , emisión de pulso inicial r_0 , emisión de pulso r, el factor de atenuación α , factor de mejora de la emisión de pulso γ , número de iteraciones N_{int} y el radio vector W_B . Es necesario mencionar que las frecuencias Q_0 , Q_{min} y Q_{max} se refieren al rango de frecuencias del sonido que emiten los murciélagos, estas son diferentes al rango de operación de las antenas. Una vez establecidos dichos parámetros que se muestran en la Tabla 3.5, se generan aleatoriamente la frecuencia Q_i y la velocidad v_i del murciélago-antena utilizando la Eq. 2.9 y la Eq. 2.10.

Tabla 3.5

Parámetro	Valor	Descripción
n	20	Población de murciélagos
d	8	Dimensión
L_b	3	Limite mínimo
U_b	5	Limite máximo
Q_{min}	1	Frecuencia mínima
Q_{max}	2	Frecuencia máxima
Q_0	0	Frecuencia inicial
A	0.9	volumen del pulso
v_0	0	Velocidad inicial
r_0	0.001	Emisión de pulso inicial
r	[0 1]	Emisión de pulso
α	0.9	Factor de atenuación
γ	0.9	Factor de mejora de la frecuencia de pulso
N _{int}	30	Número de iteraciones
W_B	[-0.9 0.9]	Vector variable

Dave free atreas	Jal DA		
<i>i uiumeiios</i>	uei DA	para ia	opiimizacion

Los valores iniciales de la Tabla 3.3 con los parámetros del algoritmo siguen el proceso de la Fig. 3.5. Se extrae los valores de los parámetros de la antena para ser analizados (Tabla 3.2) y obtener el valor de la función objetivo utilizando la Eq. 3.1. El menor valor obtenido

de dicha función se le denomina como F(best) y a las dimensiones del murciélago-antena como x*.

Una vez obtenido F(best), el algoritmo de optimización ingresa a un bucle definido por una cantidad de iteraciones definidas previamente (30 iteraciones). En dicho bucle se genera aleatoriamente nuevas dimensiones, frecuencias y velocidad del murciélago-antena utilizando las Eq. 2.8, Eq. 2.9 y Eq. 2.10. A la par, se genera un número aleatorio $rand \in [0 1]$. Si se obtiene un número mayor al pulso r_i , se seleccionan los valores de las dimensiones del murciélago-antena (x*) para generar una nueva solución en torno a él, utilizando la Eq. 2.11 como se visualiza en la Fig. 3.14. Luego, las nuevas dimensiones de la siguiente generación de murciélagos se envía al simulador electromagnético para obtener los siete parámetros de antena. Los nuevos parámetros son analizados mediante el proceso de la Tabla 3.2. Por último, se evalúa su función objetivo $F(x_i)$.

Tabla 3.6

Pseudo có	digo del	algoritmo	murciélago	(BA)

Pseudo código del algoritmo murciélago (BA)
Función Objetivo $F(\mathbf{x}), \mathbf{x} = x_1, x_2,, x_n$
Inicia la población murciélago, x_i (i = 1, 2,, n)
Genera aleatoriamente la frecuencia f_i y la velocidad v_i
Se extrae los parámetros de la antena
Se analiza los parámetros [tabla 3.2]
Evalúa la función objetivo [ecuación 3.1]
while (Número de iteraciones)
Genera nuevas frecuencias [ecuación 2.8]
Actualiza las posiciones y velocidad [ecuación 2.9 y 2.10]
if $(rand > r_i)$
Selecciona la mejor solución
Genera una solución local entorno a ella [ecuación 2.11]
end if
Se extrae los parámetros del simulador electromagnético
Se analiza los parámetros [tabla 3.2]
Evalúa la función objetivo [ecuación 3.1]
if $(rand < A_i)$ y $(F(x_i) < F(best))$
Acepta la nueva solución
Actualiza r_i y A_i [ecuación 2.12 y 2.13]
end if
end while
Retorna la mejor solución x*

Con el valor $F(x_i)$ del murciélago-antena, se ingresa por una condición propia del algoritmo, la cual consiste en generar un valor aleatorio $rand \in [0 \ 1]$, evaluando dicho valor si es menor al volumen del pulso A_i . Además, se evalúa si el valor de la función objetivo $F(x_i)$ es inferior al valor de la mejor solución F(best) de la iteración anterior. De ser así, se acepta la nueva dimensión como la nueva mejor solución y se actualiza F(best). Por otro lado, se actualiza la frecuencia de pulso r_i y el volumen del pulso A_i utilizando las Eq. 2.12 y 2.13. Este proceso se repite cíclicamente hasta que se cumple la cantidad de iteraciones indicadas previamente. Al finalizar las iteraciones, el algoritmo entrega la mejor solución obtenida. Dicho proceso se describe en el pseudo código mostrado en la Tabla 3.6.

Figura 3.14. Radio vector Fuente: Elaboración propia

Con fines ilustrativos en la Fig. 3.14 la variable W_B representa el radio y X_{old} el centro de la circunferencia. El algoritmo escoge un valor aleatorio en el área circular para obtener una dimensión cercana a x*.

Análisis de resultados con prioridad BW

Para recordar, en este caso se desea obtener un gran ancho de banda (BW), dejando como segundo plano el valor de la ganancia y la dirección del patrón de radiación debido a que es un parámetro muy difícil de mejorar. En la presente tesis se realizaron 20 intentos con 30 iteraciones cada una. Las dimensiones y valores de los parámetros obtenidos en cada intento se encuentran en la Tabla 6.1 y 6.2. El mejor resultado de los intentos es el *int*₁₃ de las tablas mencionas anteriormente. En dicho intento se tienen las 20 antenas optimizadas, resultado de las 30 iteraciones. En la Tabla 3.9 se detallan los parámetros de las 20 antenas que se obtuvieron. En la penúltima fila (%) de dicha tabla, se muestra un 80 % de las antenas que cumplieron la primera condición del ancho de banda. En la segunda condición solo cumplió el 80 % y en la tercera condición solo se llegó a 75 % en el caso de $HPBW_{\phi=90}$ con $\angle G_{\phi=90}^{max_0i}$, pero en los parámetros restantes se llegó al 100 %. El menor valor objetivo de las 20 antenas

lo tiene la Ant_{18} con F(x) = 4,6291 resaltado de gris. En la última fila se detalla los mejores parámetros obtenidos con su valor objetivo.

Haciendo referencia a los parámetros iniciales de la tabla 3.4 se evidencia un gran aumento de 65 % que cumple la primera condición. Un aumento de 45 % en la segunda condición. En los parámetros $HPBW_{\phi=90}$, $HPBW_{\phi=0}$, $\angle G_{\phi=90}^{max_Oi}$, $\angle G_{\phi=0}^{max_Oi}$ se obtuvo un aumento de 70 %, 65 %, 70 %, 60 % respectivamente. En el caso del valor objetivo incremento en 60 %.

Para considerar que una antena cumplió con los requerimientos mínimos, se definió que el valor objetivo obtenido debe oscilar en el intervalo [0 - 10]. Dicho intervalo es escogido porque los valores de los parámetros empiezan a mejorar según las pruebas realizadas al comienzo de la tesis. En la tabla 3.7 se recopila los valores objetivos en intervalos de 5 para un mejor análisis. En dicha tabla, el 45 % de los valores de la función objetivos son mayores F(x) > 10. Además, la mitad de la población se concentra en el intervalo (5-10] y un pequeño porcentaje del 5 % son menores F(x) < 5.

Tabla 3.7Intervalos de cumplimiento BA de función objetivo con prioridad BW

F(x)	%
(20 - 25]	25
(15 - 20]	20
(10 - 15]	0
(5-10]	50
[0 - 5]	5

En las dimensiones de las 20 antenas optimizadas que se muestra en la tabla 3.8, se obtuvo una reducción en la variación de las dimensiones. En la dimensión W_4 el intervalo se redujo de [3.14 - 4.97] a [3.00 - 3.33] y en la dimensión L_3 de [3.03 - 4.84] a [3.00 - 3.89] siendo las reducciones mas notable. La mejor medida obtenida X* se muestra en la última fila de dicha tabla.

		L_4	4.7095	4.3221	5.0000	5.0000	4.6862	4.4223	4.5213	4.3795	4.2839	4.4532	4.2672	4.5390	3.9599	4.0991	3.8949	4.3530	4.3600	4.0612	4.3913	3.7479	3.74 - 5.00]	4.0612
		L_3	3.7189	3.8529	3.8950	3.3041	3.8168	3.8477	3.4392	3.4452	3.5942	3.6737	3.2280	3.7195	3.2171	3.3294	3.3703	3.4332	3.1210	3.0609	3.0000	3.2810	3.00 - 3.89]	3.0609
VAS		L_2	3.7443	3.5715	3.7944	3.8141	3.5559	3.5356	4.0837	4.2727	4.5437	4.3631	3.8768	4.4746	3.9486	3.8713	4.1701	3.7293	3.7743	3.7637	3.5758	3.6587	[3.53 - 4.54]	3.7637
E LAS ANTEN	siones	L_1	4.0176	3.7505	4.0992	4.3932	3.7692	4.1309	3.9131	3.7755	3.3959	3.5148	4.1257	3.9035	3.7472	3.3582	3.1495	3.3567	3.4516	3.5400	3.8615	3.6654	[3.14 - 4.13]	3.5400
ÖPTIMAS D	Dimen	W_4	3.0000	3.3091	3.0000	3.0665	3.0000	3.0000	3.0486	3.0000	3.0000	3.0306	3.0000	3.0000	3.0090	3.1665	3.0000	3.0000	3.3345	3.0000	3.0000	3.0000	[3.00 - 3.33]	3.0000
IMENSIONES		W_3	3.9211	4.2171	3.9703	4.0480	4.1837	3.7695	3.7209	3.7485	3.8367	3.4759	3.5969	3.7150	3.9846	3.8736	3.9854	3.8064	4.0098	4.1343	4.2746	4.0742	[3.47 - 4.27]	4.1343
D		W_2	3.2009	3.2023	3.0000	3.6615	3.3374	3.4409	3.5977	3.6837	3.9154	4.1103	3.2734	3.5341	3.5006	3.6206	3.6258	3.6396	3.2903	3.8922	3.5530	3.9383	[3.00 - 4.11]	3.8922
		W_1	3.2175	3.5518	3.2531	3.5388	3.1581	3.0000	3.4338	3.8452	3.9902	3.5198	4.1971	3.6062	3.7397	3.6300	3.9263	3.8870	3.4942	3.2592	3.0000	3.1947	[3.00 - 4.19]	3.2592
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	Variación	X*

Tabla 3.8 Dimensiones óptimas de las antenas BA-BW

			PARÁME	TROS ÓPTIN	10S DE LAS	ANTENAS		
				Parámet	tros			Prioridad BW
	BW	G	$\delta \overline{G}_{\theta=1}$	$HPBW_{\phi=90}$	$HPBW_{\phi=0}$	$\angle G^{max_Oi}_{\phi=90}$	$\angle G^{max_Oi}_{\phi=0}$	F(x)
Ant_1	339	16.3152	0.4022	6	72	1	0	5.9752
Ant_2	0	15.558	0.9285	50	74	4	0	25
Ant_3	87	15.5139		50	75	4	0	17.5805
Ant_4	378	14.0947	1	50	<i>LL</i>	7	0	18.6753
Ant_5	120	15.8392	0.545	10	72	2	0	6.4294
Ant_6	300	16.002	0.3769	6	73		0	6.3404
Ant_7	474	16.3376	0.4115	6	72		0	5.9577
Ant_8	0	16.398	0.5291	6	71	2	0	25
Ant_9	78	15.8185	0.8557	6	72	с С	0	6.2833
Ant_{10}	129	15.286	1	50	75	8	0	17.9419
Ant_{11}	549	13.8707	0.5319	∞	73	1	0	6.4996
Ant_{12}	168	15.7843	1	50	76	8	0	18.1383
Ant_{13}	0	16.628	0.1211	6	70	0	0	25
Ant_{14}	252	16.6541	0.0767	6	70	0	0	5.2198
Ant_{15}	0	16.2839	0.0978	6	70	0	0	25
Ant_{16}	198	16.5042	0.0774	6	71	0	0	5.5552
Ant_{17}	363	16.5721	0.0661	10	70	0	0	5.4746
Ant_{18}	312	16.5760	0.0693	6	68	0	0	4.6291
Ant_{19}	345	16.3787	0.0551	10	69	0	0	5.2145
Ant_{20}	0	16.5775	0.0712	10	70	0	0	25
0%	80	100	80	75	100	75	100	75
F(best)	312	16.576	0.0693	6	68	0	0	4.6291

Tabla 3.9 Parámetros óptimos de las antenas BA-BW

Análisis de resultados con prioridad G

En esta prioridad se busca obtener una buena ganancia con el direccionamiento del patrón de radiación en $\theta = 0^{\circ}$, dejando de lado el valor del ancho de banda pero al menos contar con un poco de BW para que cumpla la primera condición. Las dimensiones y valores de los parámetros obtenidos en cada intento se encuentran en la Tabla 6.3 y 6.4. El mejor resultado de los intentos es el int_{18} de las tablas mencionas anteriormente. En dicho intento se tienen las 20 antenas optimizadas, resultado de las 30 iteraciones. En la Tabla 3.12 se detallan los parámetros de las 20 antenas que se obtuvieron. En la penúltima fila (%) de dicha tabla, se muestra un 95 % de las antenas que cumplieron la primera y segunda condición. En la tercera condición se llegó a 95 % en el caso de $HPBW_{\phi=90}$ con $\angle G_{\phi=90}^{max_0i}$, pero en los parámetros restantes se llegó al 100 %. El menor valor objetivo de las 20 antenas lo tiene la Ant_5 con F(x) = 3,6407 resaltado de gris. En la última fila se detalla los mejores parámetros obtenidos con su valor objetivo.

Haciendo referencia a los parámetros iniciales de la tabla 3.4 se evidencia un gran aumento de 80 % que cumple la primera condición. Un aumento de 60 % en la segunda condición. En los parámetros $HPBW_{\phi=90}$, $HPBW_{\phi=0}$, $\angle G_{\phi=90}^{max_Oi}$, $\angle G_{\phi=0}^{max_Oi}$ se obtuvo un aumento de 90 %, 65 %, 90 %, 60 % respectivamente. En el caso del valor objetivo se obtuvo un gran incremento de 80 %.

En la tabla 3.10 solo el 5% de los valores objetivos son mayores F(x) > 10. El 95% son valores objetivos aceptables por se menores a 10. Además, el 85% de la población se concentra en el intervalo [0 - 5], aproximándose al objetivo de F(x) = 0.

Tabla 3.10

Intervalos de cumplimiento BA de función objetivo con prioridad G

F(x)	%
(20 - 25]	5
(15 - 20]	0
(10 - 15]	0
(5-10]	10
[0 - 5]	85

En la tabla 3.11, la dimensión W_3 el intervalo se redujo de [3.00 - 4.97] a [3.00 - 4.13], en la variable W_4 se redujo de [3.14 - 4.97] a [3.00 - 3.52] y en la variable L_2 de [3.21 - 4.98] a [3.00 - 3.76]. En el caso de la dimensión L_1 los valores de dicha columna son menores de 4.0229 (Ant_{17}).En resumen, las cuatros variables mencionadas, convergen en el intervalo [3.0 - 4.0].

S DE LAS ANTENAS PRIORIDAD GAIN		L_4	4.5194	5.0000	4.5012	4.1065	4.0802	4.8987	4.9877	4.3275	4.5883	4.5735	4.0131	4.6472	4.3198	4.7544	4.9913	5.0000	5.0000	4.8339	4.8568	4.6525	[3.80 - 5.00]	4.0802
		L_3	3.8994	4.1747	3.5319	3.3532	3.0510	3.7823	3.9071	4.0071	3.5680	3.4429	3.9274	4.2930	4.3089	4.2536	3.8106	3.3583	3.9486	4.0800	3.8193	3.8558	[3.06 - 4.29]	3.0510
		L_2	3.3671	3.0000	3.3576	3.0000	3.7637	3.0000	3.0000	3.0000	3.0182	3.5031	3.2877	3.3783	3.0603	3.5665	3.2840	3.2891	3.0000	3.3268	3.0000	3.3253	[3.00 - 3.76]	3.7637
	siones	L_1	3.5326	3.3076	3.6900	3.5081	3.6405	3.0770	3.6371	3.5558	3.6376	3.3786	3.7687	3.3855	3.9066	3.7410	3.5639	3.5184	4.0229	3.4878	3.3402	3.2517	[3.07 - 4.02]	3.6405
	Dimen	W_4	3.0000	3.0000	3.1529	3.5237	3.0000	3.0000	3.0000	3.1647	3.0170	3.0000	3.0000	3.0000	3.1107	3.0000	3.1820	3.3377	3.0000	3.0000	3.1752	3.0000	[3.00 - 3.52]	3.0000
NES ÓPTIMA		W_3	3.1480	3.2311	3.1058	3.2551	4.1563	3.6825	3.0215	3.1411	3.3501	3.5376	3.0000	3.5489	3.0108	3.0000	3.0700	3.1134	3.0000	3.0308	3.0000	3.0063	[3.00 - 4.13]	4.1563
DIMENSIO		W_2	4.3632	4.2759	4.3438	4.0582	3.8942	3.9693	4.7411	4.4222	4.6252	4.0891	4.5925	4.2651	4.3730	4.1359	4.2397	4.0831	4.5510	4.2714	4.5845	4.5330	[3.87 - 4.74]	3.8942
		W_1	3.5726	3.8044	3.4648	3.5333	3.2613	3.5633	3.3779	3.7443	3.3738	3.7252	3.2764	3.5333	3.0838	3.2344	3.3169	3.7511	3.0000	3.3799	3.5354	3.4888	[3.00 - 3.80]	3.2613
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	Variación	X*

Tabla 3.11 Dimensiones óptimas de las antenas BA-G

	Prioridad G	F(x)	4.1066	4.3375	4.0568	4.4787	3.6407	5.8363	4.4775	4.4148	4.2932	4.0849	4.3449	9.7141	4.8318	4.3976	4.0419	4.0627	4.7466	25	4.4743	4.3081	95	3.6407
		$\angle G^{max_Oi}_{\phi=0}$	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0
ANTENAS		$\angle G^{maxOi}_{\phi=90}$	0	0	0	1	0	0	0	0	0	0	0	5	1	1	0	0	0	0	0	0	95	0
OS DE LAS A	tros	$HPBW_{\phi=0}$	70	71	70	71	68	76	71	71	70	70	71	74	73	71	70	70	72	71	71	71	100	68
ROS ÓPTIM	Paráme	$HPBW_{\phi=90}$	6	6	6	10	6	6	10	10	10	6	6	50	6	6	6	6	10	6	10	6	95	6
ARÁMET		$\delta \overline{G}_{ heta=1}$	0.1253	0.1093	0.0666	0.1972	0.0752	0.1523	0.0985	0.0996	0.0629	0.0728	0.0781		0.1563	0.3358	0.1167	0.0732	0.1186	0.1180	0.0762	0.0640	95	0.0752
P		С	16.6824	16.5159	16.6070	16.4620	16.6621	14.7101	16.2709	16.5975	16.3809	16.6722	16.3865	15.5767	16.4104	16.5866	16.6659	16.5452	16.1425	16.5689	16.2972	16.4624	100	16.6621
		BW	87	120	306	309	315	36	189	126	39	159	198	129	168	165	315	339	69	0	174	255	95	315
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	0%	F(best)

Tabla 3.12Parámetros óptimos de las antenas BA-G

Recapitulando, la Ant_{18} de la prioridad BW cumple con la primera condición de contar con un ancho de banda en el rango solicitado con 312MHz, también, cumple con la segunda condición, direccionando su máxima ganancia en $\theta = 0^{\circ}$ y por último, la tercera condición por tener muy bajo el valor de $\overline{G} = 0,0693$ indicando que casi todos los valores de la ganancia en $\theta = 0^{\circ}$ es cercano a la ganancia máxima.

En la prioridad G, la Ant_5 cumple con las tres condiciones, además es una de las antenas que tienen una gran ganancia e incluso es mayor que la ganancia de la prioridad BW. Además, tiene un ancho de banda de 312MHz y direccionado en $\theta = 0^\circ$. Con dichos resultados, se puede afirmar que el algoritmo BA cumple el segundo objetivo especifico de la presente tesis.

3.2.4. Implementación y prueba del algoritmo PSO

De manera similar al caso del algoritmo de murciélago, en la implementación del presente algoritmo, se inicia estableciendo una función objetivo que se representa mediante la Eq. 3.1. Asi mismo, se define el parámetro de prioridad (G o BW) para establecer los pesos de P_i . El algoritmo PSO inicia con una población de 20 partículas-antenas y con 8 dimensiones iniciales en cada partícula-antena. Luego, se define el número de iteraciones N_{it} , velocidad inicial v_0 , límite mínimo L_b y máximo U_b de las dimensiones. Para la selección del peso de inercia y de los factores de corrección, se utilizará la constante de Clerc o factor de constricción de Clerc K. Dicho factor esta descrito por la siguiente ecuación:

$$K = \frac{2}{|2 - \varphi - \sqrt{\varphi^2 - 4\varphi}|}, \qquad \varphi = C_1 + C_2, \qquad \varphi > 4$$
(3.7)

Donde la Eq. 2.16 quedaría simplificado por el factor de constricción.

$$v_i^{t+1} = K * [v_i^t + C_1 * rand * (P_{best_i}^t - x_i^t) + C_2 * rand * (G_{best}^t - x_i^t)]$$
(3.8)

Se define el valor de $\varphi = 4.1$, siendo el valor de $C_1 = 2.05$, $C_2 = 2.05$ y K = 0.729(Eberhart y Shi, 2000b). Una vez establecidos los parámetros que se muestran en la Tabla 3.13, se genera aleatoriamente la velocidad v de la partícula-antena utilizando la Eq. 3.8 y se obtiene la posición con la Eq. 2.17
Parámetro	Valor	Descripción
n	20	Población de partículas
d	8	Dimensión
L_b	3	Limite mínimo
U_b	5	Limite máximo
v_0	0	Velocidad inicial
K	0.729	Factor de constricción
C_1	2.05	Factor de corrección local
C_2	2.05	Factor de corrección global
N _{it}	30	Número de iteraciones

Tabla 3.13 Parámetros del PSO para la optimización

En la Fig. 3.5 se detalla el procedimiento de la obtención de los parámetros de la antena con las dimensiones iniciales de la Tabla 3.3. Se analiza los parámetros mediante el proceso de la Tabla 3.2. Los valores de los parámetros obtenidos se evalúan en la función objetivo utilizando la Eq. 3.1, donde cada partícula guarda su valor inicial de la función objetivo con el nombre de P_{best} y se escoge la partícula que tenga el menor valor objetivo, denominándose G_{best} .

Una vez obtenido el P_{best} y G_{best} , el algoritmo de optimización ingresa a un bucle definido por una cantidad de iteraciones definidas previamente (30 iteraciones). En dicho bucle se genera aleatoriamente nuevas dimensiones y velocidad de la partícula-antena utilizando la Eq. 3.8 y Eq. 2.17. Luego, las nuevas dimensiones de la siguiente generación de partículas se envía al simulador electromagnético para obtener los parámetros de antena. Con los parámetros obtenidos se analiza nuevamente con el proceso de la Tabla 3.2. Por último, se evalúa la función objetivo $F(x_i)$ de cada partícula.

Con el valor $F(x_i)$ de la partícula-antena, se pasa por una nueva condición propia del algoritmo, la cual consiste en que si el nuevo valor $F(x_i)$ de cada partícula-antena es menor a su P_{best} , entonces, se acepta la nueva solución y es el nuevo P_{best} , caso contrario se genera nuevas posiciones aleatorias. Además, si el valor $F(x_i)$ es menor al G_{best} se aceptará como nueva solución global y será el nuevo G_{best} . Este proceso se repite cíclicamente hasta que se cumpla las 30 iteraciones indicadas previamente. Al finalizar las iteraciones, el algoritmo entrega el valor del G_{best} , siendo la mejor solución obtenida. Dicho proceso se describe en el pseudo código mostrado en la Tabla 3.14.

 Tabla 3.14

 Pseudo código del algoritmo PSO

Pseudo código del algoritmo PSO
Función Objetivo F(x), $x = x_1, x_2,, x_n$
Inicia la población de partículas, x_i (i = 1, 2,, n) y v_i
Extrae los parámetros de la antena
Analiza los parámetros [tabla 3.2]
Evalúa la función objetivo [ecuación 3.1]
Se escoge P_{best} de cada partícula y G_{best} de la población
while (Número de iteraciones)
Se actualiza la posición y velocidad [ecuación 2.16 y 2.17]
Se extrae los parámetros del simulador
Se analiza los parámetros [tabla 3.2]
Evalúa la función objetivo [ecuación 3.1]
if $F_x < P_{best_i}^{t-1}$
Se acepta la nueva posición P_{best_i}
if $F_x < G_{best}^{t-1}$
Se acepta la nueva posición G_{best}
end if
else if
Se genera una posición aleatoria
end if
end while
Retorna la mejor solución G_{best}

Análisis de resultados con prioridad BW

Una vez mas se vuelve a recordar, en ese sentido, se desea obtener un gran ancho de banda (BW), dando poca prioridad el valor de la ganancia y la dirección del patrón de radiación. Las dimensiones y valores de los parámetros obtenidos en cada intento se encuentran en la Tabla 6.5 y 6.6. En este caso se obtuvo el int_{15} y int_{19} con el mejor resultado siendo iguales de las tablas mencionadas anteriormente.

Se escogió el intento int_{15} de las 20 antenas optimizadas, siendo resultado de las 30 iteraciones. En la Tabla 3.17 se detallan los parámetros de las 20 antenas que se obtuvieron. En la penúltima fila (%) de dicha tabla, se muestra que un 80% de las antenas cumplieron la primera condición y 45% la segunda condición. En la tercera condición se llegó a 40% en el caso de $HPBW_{\phi=90}$ con $\angle G_{\phi=90}^{max_O i}$, pero en los parámetros restantes se llegó al 60%. El menor valor objetivo de las 20 antenas lo tiene la Ant_{11} con F(x) = 5,1730 resaltado de gris. En la última fila se detalla los mejores parámetros obtenidos con su valor objetivo. Haciendo referencia a los parámetros iniciales de la tabla 3.4 se evidencia un gran aumento de 65 % que cumple la primera condición. Un pequeño aumento de 10 % en la segunda condición. En los parámetros $HPBW_{\phi=90}$, $HPBW_{\phi=0}$, $\angle G_{\phi=90}^{max_0i}$, $\angle G_{\phi=0}^{max_0i}$ se obtuvo un aumento de 35 %, 25 %, 35 %, 20 % respectivamente. En el caso del valor objetivo se obtuvo un gran incremento de 65 %.

En la tabla 3.15 el 60 % de los valores objetivos son mayores F(x) > 10. El 40 % son valores objetivos aceptables por ser menores a 10.

Tabla 3.15

Intervalos de cumplimiento PSO de función objetivo con prioridad BW

F(x)	%
(20 - 25]	50
(15 - 20]	10
(10 - 15]	0
(5 - 10]	40
[0 - 5]	0

En la tabla 3.16, el intervalo de la dimensión W_1 se redujo de [3.10 - 4.96] a [3.10 - 3.78]; en el intervalo de la variable W_2 se redujo de [3.10 - 4.77] a [3.27 - 4.03], en el caso de la variable L_2 de [3.21 - 4.98] a [3.35 - 3.92] y en la dimensión L_3 de [3.03 - 4.84] a [3.00 - 3.96]. En resumen, las cuatro dimensiones mencionadas, convergen en el intervalo [3.0 -4.03]. La medida óptima que se encuentra en la última fila sus dimensiones se encuentran en el rango [3.53 - 3.63] con una diferencia de 0.1.

		DIMENSIC	DNES ÓPTIM	AS DE LAS A	NTENAS PRI	ORIDAD BW		
				Dimen	isiones			
	W_1	W_2	W_3	W_4	L_1	L_2	L_3	L_4
Ant_1	3.1055	3.7722	4.9061	4.5043	3.8144	3.7824	3.6120	4.4913
Ant_2	3.2953	4.0377	4.4509	4.1789	4.1282	3.9299	3.7727	4.2160
Ant_3	3.7843	3.9106	4.3968	4.4098	4.0751	3.8802	3.9620	4.4036
Ant_4	3.1054	3.2750	4.3315	3.3324	3.4775	3.4371	3.3891	3.4427
Ant_5	3.1679	3.2946	4.4375	3.4559	3.2803	3.4117	3.0000	3.5665
Ant_6	3.2746	3.4091	3.9356	3.3696	3.4794	3.4230	3.3866	3.5300
Ant_7	3.2883	3.4566	3.8199	3.5008	3.5391	3.4799	3.5438	3.2966
Ant_8	3.1723	3.4359	3.9521	3.5163	3.3811	3.3921	3.3508	3.3031
Ant_9	3.2926	3.3410	4.2310	3.3194	3.4440	3.3908	3.3488	3.4454
Ant_{10}	3.2051	3.2974	3.7237	3.3241	3.4408	3.3513	3.3534	3.3899
Ant_{11}	3.5803	3.5476	3.5331	3.5472	3.5811	3.5697	3.6330	3.5328
Ant_{12}	3.6867	3.6735	4.1900	3.9441	3.7447	3.7055	3.5274	3.8425
Ant_{13}	3.1052	3.6181	4.4313	3.5204	4.1199	3.4977	3.7612	3.9494
Ant_{14}	3.4766	3.6229	4.2173	3.7808	3.7561	3.6949	3.7887	3.7176
Ant_{15}	3.1052	3.8780	4.4453	3.5174	3.8012	3.4966	3.6745	3.8556
Ant_{16}	3.2226	3.2905	4.0783	3.3259	3.4208	3.3434	3.3513	3.3923
Ant_{17}	3.2834	3.3449	3.9954	3.4890	3.5420	3.5422	3.3880	3.4263
Ant_{18}	3.1051	3.5321	4.5060	3.5303	4.0876	3.5074	3.4741	4.1263
Ant_{19}	3.2400	3.3054	3.7237	3.3264	3.3798	3.3767	3.3474	3.3745
Ant_{20}	3.1051	3.5666	4.5487	3.3181	4.1906	3.5253	3.5595	4.1370
Variación	[3.10 - 3.78]	[3.27 - 4.03]	[3.53 - 4.90]	[3.31 - 4.50]	[3.28 - 4.19]	[3.35 - 3.92]	[3.00 - 3.96]	[3.30 - 4.40]
X*	3.5803	3.5476	3.5331	3.5472	3.5811	3.5697	3.6330	3.5328

Tabla 3.16 Dimensiones óptimas de las antenas PSO-BW

_		-								·		-		·				·	-	·				·
	Prioridad BW	F(x)	18.2384	18.4946	22.0264	5.3364	7.0131	6.3112	5.5965	7.5262	5.6703	25	5.1730	23.1426	25	22.9827	23.8063	25	5.2092	23.8455	25	23.8589	80	5.1730
		$\angle G^{maxoi}_{\phi=0}$	0	0	0	0	1	0	0	0	0	29	0	34	m	31	67	5	0	67	29	68	60	0
ANTENAS		$\angle G^{maxOi}_{\phi=90}$	6	8	8	-	ω	-		ω		7	0	8	8	7	L	5	0	2	7	7	40	0
IOS DE LAS	ros	$HPBW_{\phi=0}$	75	77	89	70	74	72	71	75	71	90	70	90	89	90	90	90	70	90	90	06	60	70
TROS ÓPTIN	Parámet	$HPBW_{\phi=90}$	50	50	50	6	6	10	6	10	6	50	6	50	50	50	50	50	6	50	50	50	40	6
ARÁME		$\delta \overline{G}_{\theta=1}$	0.6171		-	0.1599	0.7553	0.3003	0.1409	0.6211	0.3024	1	0.0810				1		0.1356			1	45	0.0810
I		G	14.1211	15.4895	15.2439	16.5938	15.2457	15.9824	16.6284	15.2743	16.3024	14.3705	16.8353	15.1602	14.8447	15.2687	14.7522	14.4329	16.6846	14.6113	14.2478	14.6294	100	16.8353
		BW	102	195	1368	48	75	93	369	120	363	0	360	174	0	156	153	0	327	42	0	72	80	360
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	0%	F(best)

Tabla 3.17 Parámetros óptimos de las antenas PSO-BW

Análisis de resultados con prioridad G

Cuando se prioriza la ganancia G en la optimización, se da poca prioridad al ancho de banda BW. Es suficiente con que solo cumpla la primera condición además de obtener una buena ganancia con el direccionamiento del patrón de radiación en $\theta = 0^{\circ}$. Las dimensiones y valores de los parámetros obtenidos en cada intento se encuentran en la Tabla 6.7 y 6.8. El mejor resultado de todos los intentos es el numero 18 o int_{18} que se mostró en las tablas mencionadas anteriormente. En dicho intento se tienen las 20 antenas optimizadas, resultado de las 30 iteraciones. En la Tabla 3.20 se detallan los parámetros de las 20 antenas que se obtuvieron. En la penúltima fila (%) de dicha tabla, se muestra todos los parámetros con un 100 % de las antenas. El menor valor objetivo de las 20 antenas lo tiene la Ant_5 con F(x) = 3,9871 y se resalta en gris para distinguirlo del resto. En la última fila se detalla los mejores parámetros obtenidos con su valor objetivo.

Haciendo referencia a los parámetros iniciales de la tabla 3.4 se evidencia un gran aumento de 85 % que cumple la primera condición. Un aumento de 65 % en la segunda condición. En los parámetros $HPBW_{\phi=90}$, $HPBW_{\phi=0}$, $\angle G_{\phi=90}^{max_0i}$, $\angle G_{\phi=0}^{max_0i}$ se obtuvo un aumento de 95 %, 65 %, 95 %, 60 % respectivamente. En el caso del valor objetivo se obtuvo un gran incremento de 85 %.

En la tabla 3.18 solo el 5% de los valores objetivos son menores F(x) < 5 acercándose al objetivo F(x) = 0. El 95% de la población se concentra en el intervalo [5 - 10] siendo aceptable los valores.

Tabla 3.18Intervalos de cumplimiento PSO de función objetivo con prioridad G

F(x)	%
(20 - 25]	0
(15 - 20]	0
(10 - 15]	0
(5-10]	95
[0 - 5]	5

En la tabla 3.19, los intervalos de las dimensiones W_1 , W_2 , W_3 , W_4 , L_1 , L_2 , L_3 y L_4 son 0.05, 0.06, 0.16, 0.09, 0.07, 0.09, 0.08 y 0.07, respectivamente. Con dichos valores se da a entender que las dimensiones de las antenas están convergiendo a un solo valor. La medida

óptima X * se encuentra en el rango [3.50 - 3.62] con una diferencia de 0.12, cumpliendo con el criterio de convergencia y se puede observar en la última fila de la tabla 3.19.

Recapitulando, en la prioridad BW la Ant_{11} cumple con las tres condiciones. Teniendo un BW = 360MHz, $\angle G_{\phi=90}^{max_Oi} = 0^\circ$ y $\angle G_{\phi=0}^{max_Oi} = 0^\circ$. Además, con $\overline{G} = 0,0810 \ dB$ siendo un valor cercano al objetivo de 0,01.

Para el caso de la prioridad G, la Ant_5 cumplió con todas las condiciones establecidas. Con una $G = 16,8543 \ dB$, $\overline{G} = 0,0889 \ dB$ y $BW = 336 \ MHz$, siendo buenos resultados obtenidos del algoritmo. Con dichos resultados, la implementación del algoritmo PSO cumple el segundo objetivo especifico de la presente tesis.

		L_4	3.6264	3.5691	3.5540	3.5825	3.6069	3.5643	3.5824	3.5882	3.5873	3.5900	3.5858	3.5824	3.5874	3.5896	3.5811	3.5902	3.5973	3.5953	3.5687	3.5737] [3.55 - 3.62]	3.6069
7		L_3	3.5376	3.5423	3.5450	3.5451	3.6110	3.5431	3.5424	3.5455	3.5359	3.5395	3.5408	3.5421	3.5414	3.5309	3.5396	3.5458	3.5434	3.5434	3.5395	3.5407	[3.53 - 3.61]	3.6110
ORIDAD GAIN		L_2	3.6674	3.6502	3.6408	3.5744	3.6286	3.5978	3.6089	3.6182	3.6006	3.5974	3.6006	3.5965	3.5849	3.6017	3.6365	3.6080	3.5922	3.6033	3.6158	3.6121	[3.57 - 3.66]	3.6286
VTENAS PRIC	nsiones	L_1	3.6556	3.6313	3.5914	3.5925	3.5550	3.6271	3.6440	3.6149	3.5887	3.6148	3.6039	3.5982	3.6008	3.6040	3.6093	3.6018	3.5850	3.5991	3.5982	3.6224	[3.58 - 3.65]	3.5550
AS DE LAS AN	Dimer	W_4	3.6432	3.6139	3.5916	3.6110	3.6020	3.5745	3.5578	3.5562	3.5933	3.5931	3.5885	3.5787	3.5887	3.5484	3.5699	3.5946	3.5936	3.5998	3.6038	3.6083	[3.55 - 3.64]	3.6020
NES ÓPTIMA		W_3	3.3593	3.3786	3.4073	3.4600	3.5019	3.4977	3.5146	3.4796	3.4962	3.5078	3.5119	3.4875	3.4726	3.4671	3.4693	3.4414	3.4595	3.4819	3.4603	3.4519	[3.35 - 3.51]	3.5019
DIMENSIO		W_2	3.6214	3.6097	3.6101	3.5694	3.5920	3.5829	3.5902	3.5859	3.6041	3.6168	3.6157	3.5896	3.5660	3.5600	3.5797	3.5999	3.5797	3.5842	3.5872	3.5866	[3.56 - 3.62]	3.5920
		W_1	3.5511	3.5482	3.5467	3.5441	3.5915	3.5487	3.5497	3.5507	3.5431	3.5444	3.5455	3.5461	3.5467	3.5346	3.5483	3.5505	3.5507	3.5505	3.5473	3.5459	[3.54 - 3.59]	3.5915
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	Variación	X*

Tabla 3.19 Dimensiones óptimas de las antenas PSO-G

-
$G \qquad \delta G_{\theta=1} H_1$
16.8526 0.0887
16.8363 0.0715
16.8057 0.0641
16.8036 0.0646
16.8543 0.0889
16.8493 0.0786
16.8612 0.0835
16.8331 0.0767
16.8484 0.0761
16.8636 0.0843
16.8627 0.0827
16.8365 0.0742
16.8072 0.0648
16.7634 0.0643
16.8296 0.0778
16.8322 0.0745
16.8154 0.0660
16.8498 0.0769
16.8366 0.0704
16.8416 0.0736
100 100
16.8543 0.0889

Tabla 3.20 Parámetros óptimos de las antenas PSO-G

3.2.5. Implementación del algoritmo GA

En el algoritmo genético, y de la misma manera que en los anteriores, primero se define el parámetro de prioridad (BW o G) para definir los pesos de la función objetivo. Luego, la población de 20 individuos-antenas y 8 dimensiones que son las posiciones iniciales, todo esto fue explicado en la subsección 3.2.2. Posterior a ello, se define el número de iteraciones N_{it} , límite mínimo L_b y máximo U_b de las dimensiones, probabilidad de mutación P_M , tipo de cruce T_C , cantidad de padres P, de cruce C, de mutación M, de genes L_G y de elitismo E. Dichos parámetros se muestran en la Tabla 3.21.

Tabla 3.21

Parámetro	Valor	Descripción								
n	20	Población de individuos								
N _{it}	30	Número de iteraciones								
L_b	3	Límite mínimo								
U_b	5	Límite máximo								
L_G	7	Número de genes								
d	8	Dimensión								
T_C	2	Tipo de cruce								
C	8	Individuos para el cruce								
P_M	4	Probabilidad de mutación								
M	12	Individuos para la mutación								
P	2	Cantidad de padres								
E	2	Individuos para etilismo								

Parámetros del GA para la optimización

La población binaria se generó manualmente y se usó la Eq. 2.14 para obtener los valores reales de las dimensiones iniciales que se usan en los algoritmos (BA y PSO). De manera similar a la implementación de los otros algoritmos, las dimensiones iniciales de la Tabla 3.3 son evaluados en el simulador electromagnético para obtener los parámetros de la antena. Se analiza los parámetros con el proceso de la Tabla 3.2. Se evalúa con la función objetivo $F(x_i)$ utilizando la Eq. 3.1 a todos los individuos. Se elige el individuo con el menor valor de la función objetivo, denominado I_{global} . También, se escoge 2 de los mejores individuos para que sean los padres de las siguientes generaciones mediante la función etilismo.

Obtenido el valor de I_{global} se ingresa al bucle que cuenta con 30 iteraciones (similar a los casos anteriores). En el bucle primero se ordena los individuos de forma ascendente según su valor obtenido de la función objetivo como se muestra en la Fig. 2.16. Después, se escoge 8 individuos para el cruce de dos puntos (Fig. 2.19). En seguida, los 12 individuos restantes

que tienen los valores altos de la función objetivo son mutados con una probabilidad del 4 % utilizando el método de la ruleta. En este método, cada uno de los individuos ocupa un sector en un círculo como se muestra en la Fig. 3.15, proporcional a su peso asignado mostrado en la Fig. 2.17. Así, generando un número aleatorio N / $\mathbb{R} \in [0-1]$, se recorre el círculo hasta conseguir la probabilidad acumulada marcada por el número aleatorio generado. Por último, los valores binarios de los individuos-antenas se codifica nuevamente en valores decimales y luego a valores reales utilizando la Eq. 2.14 para obtener la nueva dimensión del individuo-antena. Los nuevos valores se procesan en el simulador electromagnético para obtener los parámetros de antena.

Los parámetros son analizados de la Tabla 3.2 para obtener $F(x_i)$. Con el nuevo valor de la función objetivo se espera que sea menor a I_{global} , si es así, se acepta como nueva solución global y es el nuevo I_{global} . También, se guarda una cantidad determinada de individuos por la función elitismo para que sean los nuevos padres de la población. Este proceso se repite cíclicamente hasta que se cumple las iteraciones indicadas y el algoritmo entregue la mejor solución. Dicho proceso se detalla en el pseudo código de la Tabla 3.22.

Tabla 3.22Pseudo código del algoritmo Genético

Pseudo código del algoritmo Genético
Función Objetivo F(x), $x = x_1, x_2,, x_n$
Inicia la población binaria, x_i (i = 100, 101,, n)
Codificar los genes en decimal y real [Ecuación 2.14]
Extrae los parámetros de la antena
Analiza los parámetros [tabla 3.2]
Evalúa la función objetivo [ecuación 3.1]
while (Número de iteraciones)
Se ordena crecientemente los valores $F(x_i)$
Escoge los padres
Cruza los individuos
Muta los individuos con una probabilidad
Codifica en decimal y real los cromosomas [Ecuación 2.14]
Se extrae el valor de los parámetros
Se analiza los parámetros [tabla 3.2]
Evalúa la función objetivo [ecuación 3.1]
if $(F(x_i) < I_{alobal}^{t-1})$
Acepta el nuevo I_{qlobal}
Se guarda los mejores individuos por etilismo
end if
end while
Retorna la mejor solución Iglobal

Análisis de resultados con prioridad BW

Recordando nuevamente, se desea obtener un gran ancho de banda mayor de 1 GHz, dando poco peso el valor de la dirección del patrón de radiación y de la ganancia. Las dimensiones y valores de los parámetros obtenidos en cada intento se encuentran en la Tabla 6.9 y 6.10. El mejor resultado de los intentos es el int_5 de las tablas mencionadas anteriormente. En dicho intento se tienen las 20 antenas optimizadas, resultado de las 30 iteraciones. En la Tabla 3.25 se detallan los parámetros de las 20 antenas que se obtuvieron. En la penúltima fila (%) de dicha tabla, se muestra un 90 % de las antenas que cumplieron la primera y un 70 % la segunda condición. En la tercera condición se llegó a 50 % en el caso de $HPBW_{\phi=90}$ con $\angle G_{\phi=90}^{max_Oi}$, pero en los parámetros restantes se llegó al 90 %. El menor valor objetivo de las 20 antenas lo tiene la Ant_8 con F(x) = 5,6399 que se encuentra resaltado de gris. En la última fila se detalla los mejores parámetros obtenidos con su valor objetivo.

Haciendo referencia a los parámetros iniciales de la tabla 3.4 se evidencia un gran aumento de 75 % que cumple la primera condición. Un aumento de 35 % en la segunda condición. En los parámetros $HPBW_{\phi=90}$, $HPBW_{\phi=0}$, $\angle G_{\phi=90}^{max_Oi}$, $\angle G_{\phi=0}^{max_Oi}$ se obtuvo un aumento de 45 %, 55 %, 45 %, 50 % respectivamente. En el caso del valor objetivo se obtuvo un gran incremento de 75 %.

En la tabla 3.23 el 55 %, un poco más de la mitad de la población, sus valores objetivos son mayores F(x) > 10. El 45 % de los valores objetivos se concentra en el rango (5 - 10], siendo aceptables por ser menores a 10.

Tabla 3.23

Intervalos de cumplimiento GA de función objetivo con prioridad BW

F(x)	%
(20 - 25]	20
(15 - 20]	35
(10 - 15]	0
(5-10]	45
[0 - 5]	0

En la tabla 3.24, la única dimensión que disminuye es W_3 . Su intervalo se redujo de [3.00 - 4.97] a [3.10 - 4.28] pero no ha sido una reducción tan notoria como se observo en los algoritmos anteriores. Las dimensiones restantes de las antenas fueron menores de 4, pero algunas aun siguen en los extremos del caso inicial. Por tanto, la variación de las variables no disminuyeron mucho. La mejor dimensión obtenida que se encuentra en la última fila. Los valores son menores de 4 excepto con las dimensiones W_3 y L_2 .

		L_4	4.0352	4.3803	3.3921	3.4627	4.5294	3.3921	3.2588	3.2588	3.2588	3.9725	3.4784	3.2196	3.2588	5.0000	3.3921	3.2588	3.3529	4.5686	3.8000	3.3921	[3.21 - 5.00]	3.2588
		L_3	4.1137	3.8000	3.3137	3.2039	3.8000	3.3137	3.2901	3.2901	3.2901	4.2471	4.3019	4.8039	3.3137	3.0470	3.3137	3.2901	4.1686	4.4666	3.0313	3.3137	[3.03 - 4.80]	3.2901
ORIDAD BW		L_2	4.6627	3.1176	4.9450	4.4588	3.7529	4.9450	4.1529	4.8196	4.8196	3.4941	4.9843	3.2823	4.9450	3.8156	4.9450	4.9450	3.6509	4.8509	4.6549	4.8196	[3.11 - 4.94]	4.8196
NTENAS PRIC	siones	L_1	3.4862	4.9294	3.5254	3.4000	4.8666	4.3882	4.6392	3.6039	3.6039	3.3843	3.0705	4.3803	3.5254	3.7921	3.5254	3.5254	3.2509	4.6627	3.3607	3.6039	[3.07 - 4.92]	3.6039
AS DE LAS A	Dimen	W_4	3.4078	3.5960	3.1176	3.2980	3.7686	3.1960	4.0745	3.1176	3.1019	3.7294	3.4941	4.6627	3.1176	3.9176	3.0941	3.2117	3.6901	4.7647	4.2784	3.1176	[3.09 - 4.76]	3.1176
NES ÓPTIM.		W_3	3.6352	4.2862	4.0745	4.0823	3.7137	4.0745	4.0274	4.0745	4.0745	3.2196	4.1058	3.1098	4.0745	4.0274	4.0274	4.0274	3.5568	3.9411	3.5803	4.0745	[3.10 - 4.28]	4.0745
DIMENSIC		W_2	4.6078	3.5333	3.0784	3.1019	3.8549	3.0784	3.2352	3.2352	3.2352	3.1725	4.2000	4.5450	3.2352	3.3764	3.0784	3.0784	3.2431	3.5098	3.4392	3.0784	[3.07 - 4.60]	3.2352
		W_1	4.9294	4.0745	3.8549	3.8235	3.9647	3.8549	3.5333	3.5333	3.5333	3.9882	3.7058	3.0313	3.5333	3.6117	3.8549	3.5333	3.6588	4.0039	4.4980	3.8549	[3.03 - 4.92]	3.5333
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	Variación	X^*

Tabla 3.24Dimensiones óptimas de las antenas GA-BW

		-					T		1															
	Prioridad BW	F(x)	23.0586	18.0904	5.7001	5.8431	19.0453	16.2304	25	5.6399	5.6443	5.7317	16.9185	19.2279	5.9855	19.5977	5.6502	6.2610	25	18.4382	22.1530	5.6433	06	5.3317
		$\angle G^{maxoi}_{\phi=0}$	10	0	0	0	1	0	69	0	0	0	0	0	0	0	0	0	0	0	Э	0	90	0
ANTENAS		$\angle G^{maxOi}_{\phi=90}$	10	11	-	0	12	7	10			0	10	13	-	8	1	-	0	23	7	1	50	0
10S DE LAS	tros	$HPBW_{\phi=0}$	06	74	70	70	77	69	06	70	70	70	70	LL LL	71	80	70	71	71	72	88	70	06	20
TROS ÓPTIN	Paráme	$HPBW_{\phi=90}$	50	50	10	11	50	50	50	10	10	10	50	50	10	50	10	11	6	50	50	10	50	6
ARÁME		$\delta \overline{G}_{\theta=1}$	0.1455		0.2268	0.1037		0.9126		0.1932	0.1863	0.1125		0.1252	0.2085		0.1939	0.1691	0.1083	0.3045		0.2216	70	0.1125
I		G	14.0676	14.2374	15.9702	16.1222	14.3821	14.4113	12.6142	16.2058	16.2509	16.1531	13.7238	13.6644	15.9711	14.5489	16.2205	15.8383	16.1395	13.8848	13.6410	16.1748	100	16.1531
		BW	192	141	192	96	303	150	0	306	168	153	87	75	327	45	174	318	0	621	108	348	60	153
			Ant_1	Ant_2	Ant_3	Ant_4	Ant_5	Ant_6	Ant_7	Ant_8	Ant_9	Ant_{10}	Ant_{11}	Ant_{12}	Ant_{13}	Ant_{14}	Ant_{15}	Ant_{16}	Ant_{17}	Ant_{18}	Ant_{19}	Ant_{20}	%	(best)
																		T				T		H

Tabla 3.25 Parámetros óptimos de las antenas GA-BW

Análisis de resultados con prioridad G

Se intenta obtener una buena ganancia con el direccionamiento del patrón de radiación en $\theta = 0^{\circ}$. También, como mínimo que cumpla la primera condición. Las dimensiones y valores de los parámetros obtenidos en cada intento se encuentran en la Tabla 6.11 y 6.12. En este caso se obtuvo el int_8 y int_{15} con el mejor resultado, ambos con valores iguales. Se escogió el int_8 de las 20 antenas optimizadas, resultado de las 30 iteraciones. En la Tabla 3.12 se detallan los parámetros de las 20 antenas que se obtuvieron. En la penúltima fila (%) de dicha tabla, se muestra un 85% de las antenas que cumplieron la primera y un 35% en la segunda condición. En la tercera condición se llegó a 30% en el caso de $HPBW_{\phi=90}$ con $\angle G_{\phi=90}^{max_0i}$ y 70% en el caso de $HPBW_{\phi=0}$ con $\angle G_{\phi=0}^{max_0i}$. Se obtuvieron dos mejores valores objetivos el Ant_6 con el Ant_{11} siendo ambos iguales con un valor F(x) = 3,7742 resaltado de gris. En la última fila se detalla los mejores parámetros obtenidos con su valor objetivo.

Haciendo referencia a los parámetros iniciales de la tabla 3.4 se evidencia un gran aumento de 70 % que cumple la primera condición. En la segunda condición no se obtuvo aumento, se mantuvo igual. En los parámetros $HPBW_{\phi=90}$, $HPBW_{\phi=0}$, $\angle G_{\phi=90}^{max_Oi}$, $\angle G_{\phi=0}^{max_Oi}$ se obtuvo un aumento de 25 %, 35 %, 20 %, 30 % respectivamente. En el caso del valor objetivo se obtuvo un gran incremento de 70 %.

En la tabla 3.26 se observa que el 55 % de los valores obtenidos son mayores F(x) > 10, concentrándose un 40 % en el intervalo (10 - 15]. El 20 % de la población se concentra en el intervalo [0 - 5], aproximándose al objetivo de F(x) = 0.

Tabla 3.26Intervalos de cumplimiento GA de función objetivo con prioridad G

F(x)	%
(20 - 25]	15
(15 - 20]	0
(10 - 15]	40
(5-10]	25
[0 - 5]	20

En la tabla 3.27, en el intervalo de la variable W_2 aumentó el extremo derecho de [3.10 - 4.77] a [3.18 - 4.85]. Los intervalos de las dimensiones restantes tuvieron una reducción pequeña. La dimensión óptima se muestra en la ultima fila, siendo sus valores menores de 4 excepto la variable W_2 que su valor es 4.1215.

		DIMENSI	ONES OPTIN	1AS DE LAS	ANTENAS PR	JORIDAD G		
	W_{\cdot}	W_{2}	W_{2}		Islones	L_{2}	L_{2}	L_A
	3.9333	3.4000	4.1215	3.5647	4.4666	3.5725	3.9803	4.0745
	4.5529	3.4000	4.2078	3.5647	4.4823	3.5490	3.3450	3.1882
	4.4745	3.2588	4.1529	3.5254	3.9411	4.3098	4.0509	4.6705
	4.0509	4.8509	3.3450	4.1215	3.6117	3.0862	4.7882	3.2666
	4.1215	4.4431	3.3450	4.9450	3.6117	3.8392	3.5960	3.3607
	3.6745	4.1215	3.1490	3.1882	3.7137	3.8705	3.1725	3.7607
	3.9098	4.1215	3.1490	3.1882	3.7137	3.8705	3.1725	3.3450
~	3.2745	3.7215	4.0509	3.8549	3.5725	3.8156	3.5803	4.3725
6	3.6117	3.7843	3.8784	3.5803	4.1529	3.5254	3.8000	4.1843
0	3.5568	3.3450	4.1215	4.8980	4.5607	3.5490	3.0392	3.1490
	3.6745	4.1215	3.1490	3.1882	3.7137	3.8705	3.1725	3.7607
5	4.2705	4.3411	4.4588	4.1764	3.5803	3.8549	3.2901	3.5960
	3.6745	4.1215	3.1490	4.4196	3.5882	4.7490	3.1725	3.7607
4	3.6745	4.1215	3.0705	3.1882	3.7137	3.8705	3.1725	3.7607
5 L	4.7098	3.1882	3.2901	4.4352	4.8588	3.3529	3.4627	3.1647
9	3.0470	4.1843	3.0705	4.4352	3.5882	4.7490	4.3019	4.4745
4	3.6745	4.1215	3.1490	4.4196	3.7137	3.8705	3.1725	3.7607
×	4.2313	3.2117	3.0235	3.9490	3.1960	3.0941	3.0078	3.8078
6	4.2078	3.4470	3.0235	3.9490	3.1960	3.0941	3.8941	4.4666
0	3.3137	3.9019	3.0156	4.1450	4.7019	4.8352	4.1450	5.0000
ón	[3.04 - 4.70]	[3.18 - 4.85]	[3.01 - 4.45]	[3.18 - 4.94]	[3.19 - 4.85]	[3.08 - 4.83]	[3.00 - 4.78]	[3.14 - 5.00]
	3.6745	4.1215	3.1490	3.1882	3.7137	3.8705	3.1725	3.7607

Tabla 3.27 Dimensiones óptimas de las antenas GA-G

		P	ARÁMET	FROS ÓPTIM	OS DE LAS	ANTENAS		
				Paráme	tros			Prioridad G
	BW	С	$\delta \overline{G}_{\theta=1}$	$HPBW_{\phi=90}$	$HPBW_{\phi=0}$	$\angle G^{max_Oi}_{\phi=90}$	$\angle G^{max_Oi}_{\phi=0}$	F(x)
Ant_1	582	14.4206	1	50	68	6	0	8.9873
Ant_2	732	14.5355		50	99	10	0	8.5935
Ant_3	309	15.3503		50	67	11	0	8.7167
Ant_4	42	14.1632		50	82	11	0	12.1736
Ant_5	138	14.6883	-	50	76	11	0	10.8135
Ant_6	123	16.4903	0.1338	6	68	0	0	3.7442
Ant_7	153	16.2194	0.2049	6	68		0	3.8865
Ant_8	75	15.0187		50	06	8	35	12.0098
Ant_9	102	15.3466		50	06	L	36	11.8598
Ant_{10}	0	12.6860		50	06	10	68	25
Ant_{11}	123	16.4903	0.1338	6	68	0	0	3.7442
Ant_{12}	186	15.0257		50	06	11	14	13.7948
Ant_{13}	0	14.8278		50	80	L	2	25
Ant_{14}	318	16.3462	0.1661	6	68		0	3.8034
Ant_{15}	45	13.1257	0.3632	50	73	5	0	10.1202
Ant_{16}	69	14.2508		50	70	14	0	9.9836
Ant_{17}	147	14.3872		50	06	9	35	13.9861
Ant_{18}	0	13.3723	0.1624	19	71	5	0	25
Ant_{19}	78	13.3514	0.1775	6	75			6.0446
Ant_{20}	81	14.4686	1	50	06	15	0	14.0055
0%	85	100	35	30	70	30	70	85
F(best)	123	16.4903	0.1338	6	68	0	0	3.7442

Parámetros óptimos de las antenas GA-G

Tabla 3.28

Recapitulando, la Ant_8 de la prioridad BW cumple con todas las condiciones establecidas en el algoritmo obteniendo un ancho de banda de 306 MHz, también, con una G = 16,2058dB. A diferencia de lo que se obtuvo con los otros algoritmos se logro: $\angle G_{\phi=90}^{max_Oi} = 1^\circ$.

Con la prioridad G, se obtuvo dos resultados iguales siendo la Ant_6 y Ant_{11} . De todas las antenas fueron los únicos que tuvieron un gran valor con $G = 16,4903 \, dB$ y direccionado en $\angle G_{\phi=90}^{max_0i} = 0^\circ$ con $\angle G_{\phi=0}^{max_0i} = 0^\circ$. Con dichos resultados, el algoritmo GA cumple el segundo objetivo especifico.

3.2.6. Análisis comparativo de los 3 algoritmos para el diseño de antenas

Comparación de la optimización con prioridad del BW

Como se mencionó en la implementación de los tres algoritmos se realizaron 20 intentos. Con 30 iteraciones para cada intento por algoritmo según la prioridad objetivo. Cada intento que se realizó la función objetivo va disminuyendo a la par que aumenta las iteraciones de la simulación.

En el caso del algoritmo BA, los 20 intentos Int_i se muestran en la Fig. 3.16. Donde el 40 % de los intentos llegan a un valor objetivo $F_{(x)} \leq 10$ en las 5 primeras iteraciones. Conforme aumenta las iteraciones se llega a un 60 % en la iteración 15. Posterior a ello, llega a un 75 % que se mantiene hasta la iteración 30. El porcentaje restante de los intentos no llega al objetivo deseado ni cercano, como el Int_{20} que esta muy alejado con un valor de $F_{(x)} = 20, 12$. El intento que obtuvo el mejor valor $F_{(x)}$ es el Int_{13} de linea negra que tuvo una gran disminución hasta la sexta iteración, de ahí disminuyo poco hasta obtener un valor $F_{(x)} = 4,6291$.

Iteraciones	BA (%)	PSO (%)	GA (%)
5	40	50	5
10	60	50	20
15	60	50	45
20	75	55	70
25	75	55	75
30	75	55	75

Tabla 3.29			
Porcentaje por	iteraciones	con prioridad	BW

Figura 3.16. Intentos del algoritmo BA con prioridad BW Fuente: Elaboración propia

Los 20 intentos Int_i del algoritmo PSO se muestra en la Fig. 3.17. Donde el 50 % de los intentos llegan a un valor aceptable $F_{(x)} \leq 10$ en las 5 primeras iteraciones hasta la iteración 15. Conforme aumenta las iteraciones se llega a un 55 % manteniéndose constante hasta la iteración 30. El 45 % no lograr bajar el valor aceptable de la función objetivo, concentrándose en el rango de valores [14,7148 - 17,2712]. El intento que obtuvo el mejor valor $F_{(x)}$ es el Int_5 de linea negra que tuvo una gran disminución en la primera iteración has la sexta iteración, que se mantuvo constante hasta la ultima iteración con un valor $F_{(x)} = 5,1730$.

Figura 3.17. Intentos del algoritmo PSO con prioridad BW Fuente: Elaboración propia

La Fig. 3.18 muestra los 20 intentos Int_i del algoritmo GA. Donde solo el 5% de los intentos llegan a un valor aceptable $F_{(x)} \leq 10$ en las 5 primeras iteraciones. En las 5 iteraciones posteriores se llega a un 20%. Conforme aumenta 5 iteraciones se duplica el porcentaje hasta 45%. Cuando concluye las 30 iteraciones, el algoritmo llega a un 75% de los intentos establecidos. Del porcentaje restante, la mayoría de los intentos se concentra en el intervalo de [12,9212 - 13,8988]. El intento que obtuvo el mejor valor $F_{(x)}$ es el Int_5 de linea negra que tuvo una gran disminución hasta la quinta iteración, de ahí disminuyo gradualmente hasta obtener un valor $F_{(x)} = 5,6399$.

Figura 3.18. Intentos del algoritmo GA con prioridad BW Fuente: Elaboración propia

Las iteraciones se separaron en segmentos de 5 para un mejor análisis entre los algoritmos. En las 5 primeras iteraciones, la mitad de los intentos del PSO llegó a sobrepasar el valor objetivo aceptable, siguiéndole el BA con 40 % y tan solo 5 % el GA. En las 5 iteraciones posteriores solo se tiene un aumento de 10 % el BA y 15 % el GA. En las 5 iteraciones siguientes solo obtuvo un aumento de 25 % el GA. Hasta la iteración 20 los tres algoritmos llegaron con 75 % el BA, 55 % el PSO y 70 % el GA. En la última iteraciones el PSO no tuvo aumento pero el BA y GA llegaron ambos al 75 %. En resumen, en el caso de la prioridad BW, en el PSO la mitad de los intentos llega cercano al objetivo en las 5 primeras iteraciones. En comparación con el algoritmo BA, mas de la mitad de los intentos sobrepasan al limite aceptable en las primeras iteraciones y va aumentando hasta las últimas iteraciones. En cambio, el GA se demora en llegar al objetivo pero logra pasar el limite aceptable en las últimas iteraciones igualando al BA y sobrepasando al PSO. Todo lo descrito se encuentra en la Tabla 3.29.

El análisis de los porcentajes del valor objetivo descrito en el párrafo anterior, determina los valores que cruzan el limite aceptable pero no el valor mismo de la función objetivo. En ese caso, se analiza los valores finales de cada intento cuando concluye las 30 iteraciones. En la Tabla 3.30 se segmento en valores de 5 el intervalo para determinar mejor el resultado. En el caso del BA, un 5 % de los valores de la función objetivo se encuentran en el rango de (20 - 25]. En el siguiente rango, el PSO tiene un 40 % y solo un 5 % el algoritmo GA. En el rango (5 - 10] la mayoría de los intentos de los 3 algoritmos se concentran en dicho rango, 70 % el BA, 55 % el PSO y 75 % el GA. El único algoritmo que se acerco más al objetivo fue el BA con un 5 %. Con dicho análisis se determina mejor los valores obtenido por algoritmos y saber cual de ellos se acerca más al objetivo.

Tabla 3.30Porcentaje de intervalo de función objetivo con prioridad BW

Valor F(x)	BA (%)	PSO (%)	GA (%)
(20 - 25]	5	0	0
(15 - 20]	0	40	5
(10 - 15]	20	5	20
$\langle 5-10]$	70	55	75
[0 - 5]	5	0	0

En esta sección se va a proceder a comparar los algoritmos según los parámetros que se eligieron para la evaluación de la función objetivo. Se escogió el mejor valor de cada algoritmo para realizar la comparación.

Parámetro Ancho de Banda

Recordando, para el ancho de banda se utiliza los valores de $|S_{11}|_{dB}$ donde se escoge segmentos de regiones siendo 28 GHz el eje o frecuencia central. Con el objetivo de encontrar una simetría de la curva para la obtención del ancho de banda (BW) donde $S_{11} < -10 \ dB$. En la Fig.3.19 el ancho de banda de la región verde es del algoritmo GA con un $BW = 306 \ MHz$ que esta representada por la curva azul. Dicha curva se encuentra un poco desviado a la derecha por eso solo se acepta el rango de los puntos P_1 y P_2 . En el caso de la curva roja que pertenece al algoritmo BA se obtuvo un $BW = 312 \ MHz$ delimitados por la región amarilla de los puntos P_3 y P_4 . El ancho de banda de los algoritmos BA y GA son muy cercanos, con una diferencia de tan solo 6 MHz. Por otro lado, la región celeste de la curva verde perteneciente al algoritmo PSO, cuenta con un buen ancho de banda BW = 360 MHz delimitados por los puntos P_5 y P_6 . Siendo el algoritmo PSO que encontró el mejor BW con la prioridad BW.

Figura 3.19. Comparación de BW con prioridad BW Fuente: Elaboración propia

Parámetro Ganancia máxima

Recordando, para el parámetro de la ganancia máxima, solo se considera el valor máximo obtenido de la ganancia. En este caso en la Fig.3.20 se muestra el patrón de radiación 3D en el campo lejano Far-field representando la ganancia obtenida y los lóbulos obtenidos para un mejor entendimiento. En la Fig. 3.20.a) se muestra el patrón de radiación del caso inicial con una $G_{max} = 15,1 dB$ en su lóbulo principal. Además, cuenta con cuatro lóbulos secundarios de un color naranja muy notorios en ambos lados del lóbulo principal causando pérdida de ganancia al lóbulo principal. En la Fig. 3.20.b) se muestra el patrón del algoritmo BA con una $G_{max} = 16,6 dB$, con unos lóbulos secundarios verdosos pegados al lóbulo principal. En la Fig. 3.20.c) pertenece al algoritmo PSO que obtuvo una $G_{max} = 16,8 dB$, siendo el mejor resultado obtenido de los algoritmos comparados. Sus lóbulos secundarios apenas se muestra en el patrón de radiación, por tal motivo el lóbulo principal concentra casi toda la ganancia de la antena. Por último, en la Fig. 3.20.d) es del algoritmo GA, en comparación con el caso inicial tiene una $G_{max} = 16,2 dB$ pero su ganancia es menor en comparación los otros dos algoritmos.

Figura 3.20. Patrón de radiación 3D con prioridad BW-a)Caso Inicial b)BA, c)PSO, d)GA Fuente: Elaboración propia

• Parámetro $\delta \overline{G}_{\theta=1}$

En este parámetro se busca que casi todo los valores de ϕ en $\theta = 1^{\circ}$ sea igual o muy cercano a la ganancia máxima obtenida. La representación 2D del patrón de radiación, grafica todo los valores de $\phi \in [(-180) - 180]$ en la abscisa y en la ordenada los valores de θ . Sólo se analizará $\theta = 1^{\circ}$. En la Fig.3.21.a) se muestra el patrón 2D del algoritmo BA. En $\theta = 1^{\circ}$ el valor obtenido de $\delta \overline{G}_{\theta=1}$ 0,0693 *dB*. También, se puede apreciar en la grafica los lóbulos secundarios donde $\phi \in [60 - 130]$ son horizontales en la punta con $\theta \in [1 - 50]$, dando a entender que en ese tramo la ganancia son casi iguales. La Fig.3.21.b) es resultado del algoritmo PSO con una $\delta \overline{G}_{\theta=1}$ 0,0810 *dB*. En dicho patrón 2D toda las puntas de sus lóbulos secundarios son un poco redondo por tal motivo, todos los valores de las ganancias en $\theta = 1^{\circ}$ son parecidas a la ganancia máxima pero no tan cercanas. También se puede observar que sus lóbulos secundarios son semicírculos simétricos, causando que su ganancia se concentre en el lóbulo principal y tengan buena ganancia máxima como se evidencia en la Fig. 3.20.c). El resultado del algoritmo GA se muestra en la Fig.3.21.c) con una $\delta \overline{G}_{\theta=1} 0,1932 \ dB$ siendo un valor mas alto que los otros dos algoritmos. Sus lóbulos secundarios tiene una región amarilla en la punta circular causando que el lóbulo principal no tenga toda la ganancia. Por tal motivo, la ganancia en $\theta = 1^{\circ}$ no son tan parecidas.

Figura 3.21. Patrón de radiación 2D del parámetro $\delta \overline{G}_{\theta=1}$ - a)BA, b)PSO, c)GA Fuente: Elaboración propia

Parámetros Ancho de Haz y ángulo de la ganancia máxima en Phi = 90°

Recordando, para obtener el ancho de haz, primero se debe hallar la ganancia máxima, luego restarle 3 dB y ubicar los dos puntos de interceptación de la curva. Con dichos puntos se calcula la diferencia del valor de theta (θ) de cada punto obteniendo el valor del ancho de haz. Dicho eso, en la Fig.3.22.a) se muestra los valores de la ganancia a lo largo de θ en el algoritmo BA, donde su $HPBW_{\phi=90} = 9^{\circ}$ y el ángulo de la ganancia máxima es $\angle G_{\phi=90}^{max} = 0^{\circ}$. También, se puede apreciar sus tres lóbulo secundarios en cada lado que no son tan simétricos. La Fig.3.22.b) del algoritmo PSO, su ancho de haz esta desplazado 0,03° a la izquierda en comparación del algoritmo BA con $HPBW_{\phi=90}$ $= 9^{\circ}$, es decir, su ancho de haz es y sus lóbulos secundarios son casi simétricos respecto al eje 0°. Por último, su ángulo de la ganancia máxima es $\angle G_{\phi=90}^{max} = 0^{\circ}$. En el caso del algoritmo GA de la Fig.3.22.c) su ancho de haz es mayor que los otros algoritmos con $HPBW_{\phi=90} = 10^{\circ}$, también, sus lóbulos secundarios no son simétricos y están mas dispersos en comparación con los otros algoritmos. Su ángulo de la ganancia máxima está desviado un poco a la derecha con $\angle G_{\phi=90}^{max} = 1^{\circ}$.

Parámetros Ancho de Haz y ángulo de la ganancia máxima en Phi = 0°

El resultado del algoritmo BA se muestra en la Fig.3.23.a), donde su ancho de haz es $HPBW_{\phi=0} = 68^{\circ}$ siendo mucho mayor que $\phi = 90$ debido a que es una antena serial y el ángulo de la ganancia máxima se encuentra en $\angle G_{\phi=0}^{max} = 0^{\circ}$. Para el caso del algoritmo PSO de la Fig.3.23.b), su ancho de banda es mayor que el ancho de haz del algoritmo BA. Siendo su $HPBW_{\phi=0} = 70^{\circ}$, a pesar de eso, el ángulo de la ganancia máxima sigue ubicado en $\angle G_{\phi=0}^{max} = 0^{\circ}$. Para la Fig.3.23.c) del algoritmo GA, su ancho de haz es $HPBW_{\phi=0} = 70^{\circ}$, siendo igual que el algoritmo PSO pero desviado $0,03^{\circ}$ a la izquierda. Su ángulo de la ganancia máxima es $\angle G_{\phi=0}^{max} = 0^{\circ}$. En este parámetro, solo el algoritmo BA obtuvo un ancho de haz 2° mas angosto en comparación de los otros algoritmos.

Figura 3.22. Plano cartesiano de la ganancia con Phi=90° - a)BA, b)PSO, c)GA Fuente: Elaboración propia

Figura 3.23. Plano cartesiano de la ganancia con Phi=0° - a)BA, b)PSO, c)GA Fuente: Elaboración propia

Comparación de la optimización con prioridad de la G

En el caso de la prioridad de la ganancia (G) se realiza el mismo análisis pero se tiene resultados muy distintos. Para el algoritmo BA los 20 intentos Int_i se muestra en la Fig. 3.24. Donde el 95 % de los intentos llegan a un valor objetivo $F_{(x)} \leq 10$ en las 5 primeras iteraciones manteniéndose con dicho porcentaje hasta la última iteración y solo se tiene 5 % no logra pasar el valor aceptable. Por ejemplo: el Int_8 que esta muy cercano al valor aceptable con un valor de $F_{(x)} = 10,5532$ y a pesar de llegar a dicho valor en solamente la séptima iteración,no pudo disminuir mas. El intento que obtuvo el mejor valor $F_{(x)}$ es el Int_2 de linea negra que tuvo una disminución gradual hasta la décima iteración, de ahí fue constante con un valor $F_{(x)} = 3,6407$.

Figura 3.24. Intentos del algoritmo BA con prioridad G Fuente: Elaboración propia

En el caso del algoritmo PSO, el 90 % de los intentos llegan a un valor aceptable menor a $F_{(x)} \leq 10$ en las 5 primeras iteraciones. En las siguiente 5 iteraciones llega a la totalidad de los intentos, para ser mas exacto, en la sexta iteración. A pesar de cruzar el valor aceptable, una pequeña cantidad de intentos tienen valores están en el rango de valores [8,7940 - 9,3136] y otros cercanos al valor cero. El intento que obtuvo el mejor valor $F_{(x)}$ es el Int_3 de linea negra que tuvo una gran disminución hasta la tercera iteración, de ahí disminuyo mínimamente hasta obtener un valor $F_{(x)} = 3,9871$. Todo lo descrito se muestra en la Fig. 3.25.

Figura 3.25. Intentos del algoritmo PSO con prioridad G Fuente: Elaboración propia

En la Fig. 3.26 del algoritmo GA, muestra el 70 % de los intentos llegan a un valor aceptable $F_{(x)} \leq 10$ en las 5 primeras iteraciones. En las 5 iteraciones posteriores llega a un 85 % manteniéndose constante hasta la iteración 15. Conforme aumenta 5 iteraciones logra llegar al 95 %. En la iteración 25 logra tener la totalidad de los intentos con valores aceptables. Todos los intentos disminuyen su valor objetivo poco a poco llegando a valores aceptable en iteración muy avanzadas. El intento que obtuvo el mejor valor $F_{(x)}$ es el Int_8 de linea negra que tuvo una disminución lenta hasta la quinceava iteración, de ahí disminuyo significativamente en la iteración 16 manteniéndose constante con un valor $F_{(x)} = 3,7442$.

Tabla 3.31

Porcentaje por iteraciones con prioridad G

Iteraciones	BA	PSO	GA
5	95	90	70
10	95	100	85
15	95	100	85
20	95	100	95
25	95	100	100
30	95	100	100

Todo lo mencionado anteriormente de los tres algoritmos se detalla en la Tabla 3.31. Donde en las 5 primeras iteraciones, los tres algoritmos sobrepasa el 70%. Incluso el algoritmo BA, un 95% de sus intentos logran cruzar el limite aceptable. En el caso del algoritmo PSO en sus 5 iteraciones posteriores, todos los valores de sus intentos son aceptable. En cambio,

Figura 3.26. Intentos del algoritmo GA con prioridad G Fuente: Elaboración propia

el GA un buen porcentaje (70%) de sus intentos cruza el limite aceptable en el inicio pero los intentos restantes se demoran un poco en cruzar el valor del limite aceptable. A final, todos los valores de los intentos del GA son aceptables pero se demora más de 20 iteraciones en lograrlo. En resumen, en el caso de la prioridad G, en el algoritmo BA su totalidad de intentos tiene un valor aceptable pero ya no mejora en iteraciones posteriores. Los intentos del PSO cruzan el valor aceptable en unos intentos mas que el BA. En cambio, el GA tiene un buen inicio pero luego sus intentos se demoran mas en cruzar el valor aceptable en comparación con los otros algoritmos de optimización.

Tabla 3.32

Valor f(x)	BA (%)	PSO (%)	GA (%)
(20 - 25]	0	0	0
(15 - 20]	0	0	0
(10 - 15]	5	0	0
(5 - 10]	20	30	30

75

Porcentaje de intervalo de función objetivo con prioridad G

10

[0 - 5]

Como se comentó en la sección de la prioridad BW, en la Tabla 3.32 se analiza los valores finales de cada intento cuando concluye las 30 iteraciones. En el caso del BA tiene un 5 % en el rango (10-15]. Siendo el único en comparación de los otros algoritmos en encontrarse en dicho rango. En el siguiente rango los tres algoritmos tienen menos del 31 % de sus valores de su función objetivo. En el último rango de [5 - 10], el BA tiene un 5 % más que los

70

70

otros dos algoritmos, siendo el algoritmo que tiene mas intentos cercanos al valor deseado de la función objetivo. Con dichos resultados de los siete parámetros, se estaría cumpliendo el tercer objetivo especifico.

Como se comento en el caso de la prioridad BW, se escogerá el mejor valor de cada algoritmo para realizar la comparación de sus parámetros.

Parámetro Ancho de Banda

En la Fig.3.27 la curva de color azul es el resultado del algoritmo GA con un $BW = 123 \ MHz$, siendo el más pequeño en comparación con los otros algoritmos. Dicha curva se encuentra desplazado a la izquierda, por tal motivo, su ancho de banda se encuentra en la región verde, delimitado por los puntos P_1 y P_2 . En el caso del algoritmo BA que esta representada por la curva roja se obtuvo un $BW = 315 \ MHz$ delimitado por la región amarilla de los puntos P_3 y P_4 . Por otro lado, la región celeste de la curva verde perteneciente al algoritmo PSO, cuenta con un buen ancho de banda $BW = 336 \ MHz$ delimitado por los puntos P_5 y P_6 . Solo las curvas de los algoritmos BA y PSO se encuentran simétrica respecto al eje central de $28 \ GHz$. Siendo el algoritmo PSO que encontró el mejor BW con la prioridad G.

Figura 3.27. Comparación de BW con prioridad G Fuente: Elaboración propia

Parámetro Ganancia máxima

El patrón de radiación en 3D de los tres algoritmos que se estudia en esta tesis y el caso inicial se encuentran graficadas en la Fig.3.28. En la Fig. 3.28.a) se muestra el patrón de radiación del caso inicial con una $G_{max} = 15,1 \, dB$ en su lóbulo principal. Siendo el mismo patrón inicial que se mencionó en el parámetro de ganancia máxima con prioridad BW. En la Fig. 3.28.b) se muestra el patrón del algoritmo BA con una $G_{max} = 16,6 \, dB$. Sus lóbulos secundarios apenas se muestra en el patrón de radiación. En la Fig. 3.28.c) pertenece al algoritmo PSO que obtuvo una $G_{max} = 16,8 \, dB$, siendo el mejor resultado obtenido de los algoritmos comparados. Sus lóbulos secundarios apenas se muestra en el patrón de radiación el mejor resultado obtenido de los algoritmos comparados. Sus lóbulos secundarios apenas se muestra en el patrón de radiación como el algoritmo BA, por tal motivo el lóbulo principal concentra casi toda la ganancia de la antena. Por último, la Fig. 3.28.d) del algoritmo GA, cuenta con una $G_{max} = 16,5 \, dB$, siendo el menor en comparación los otros dos algoritmos. Sus lóbulos secundarios son de un color naranja en su punta restándole ganancia al lóbulo principal.

Figura 3.28. Patrón de radiación 3D con prioridad G-a)Caso Inicial b)BA, c)PSO, d)GA Fuente: Elaboración propia

Figura 3.29. Patrón de radiación 2D del parámetro $\delta \overline{G}_{\theta=1}$ - a)BA, b)PSO, c)GA Fuente: Elaboración propia

En la Fig.3.29.a) se muestra el patrón 2D del algoritmo BA. En $\theta = 1^{\circ}$ el valor obtenido de $\delta \overline{G}_{\theta=1} 0,0752 \, dB$. También, se puede apreciar en la grafica los lóbulos secundarios donde solo cuenta con un arco amarillento cercano al lóbulo principal. Los demás lóbulos son verdosos, indicando que no le quita ganancia al lóbulo principal. La Fig.3.29.b) es resultado del algoritmo PSO con una $\delta \overline{G}_{\theta=1} 0,0889 \, dB$. En dicho patrón 2D toda las puntas de sus lóbulos secundarios son circulares, por tal motivo, todos los valores de las ganancias en $\theta = 1^{\circ}$ son parecidas a la ganancia máxima pero no tan cercanas. También se puede observar que sus lóbulos secundarios son semicírculos simétricos, provocando que su ganancia se concentre en el lóbulo principal. El resultado del algoritmo PSO y el algoritmo BA. Sus lóbulos secundarios tiene dos regiones amarillas en la punta circular causando que el lóbulo principal no tenga toda la ganancia. También, en la parte inferior de la figura, se muestra regiones de color celeste indicando que se esta propagando un poco de ganancia perpendicular al lóbulo principal como se evidencia en la Fig. 3.28.d).

Parámetros Ancho de Haz y ángulo de la ganancia máxima en Phi = 90°

El ancho de haz del algoritmo BA se muestra en la Fig.3.30.a) donde su ancho de haz $HPBW_{\phi=90} = 9^{\circ}$ se encuentra mas a la derecha en comparación con los otros algoritmos. A pesar del desvió, su ángulo de la ganancia máxima se encuentra en el centro con el valor de $\angle G_{\phi=90}^{max} = 0^{\circ}$. También, se puede apreciar sus tres lóbulo secundarios del lado derecho escalonado. La Fig.3.30.b) del algoritmo PSO, su ancho de haz esta desplazado $0,03^{\circ}$ a la izquierda en comparación del algoritmo BA con $HPBW_{\phi=90} = 9^{\circ}$. Sus lóbulos secundarios son escalonado en ambos lados dando simetría al patrón de radiación. Por último, su ángulo de la ganancia máxima es $\angle G_{\phi=90}^{max} = 0^{\circ}$. En el caso del algoritmo GA de la Fig.3.30.c) su ancho de haz es mayor que los otros algoritmos con $HPBW_{\phi=90} = 9^{\circ}$ siendo su lóbulo principal el mas simétrico respecto al eje $\theta = 0^{\circ}$ en comparación con los otros algoritmos. También, sus lóbulos secundarios no son simétricos y son mas anchos. Su ángulo de la ganancia máxima se encuentra centrado con $\angle G_{\phi=90}^{max} = 0^{\circ}$.

Figura 3.30. Plano cartesiano de la ganancia con Phi=90° - a)BA, b)PSO, c)GA Fuente: Elaboración propia

Parámetros Ancho de Haz y ángulo de la ganancia máxima en Phi = 0°

Figura 3.31. Plano cartesiano de la ganancia con Phi=0° - a)BA, b)PSO, c)GA Fuente: Elaboración propia

El resultado del algoritmo BA se muestra en la Fig.3.31.a), donde su ancho de haz es $HPBW_{\phi=0} = 68^{\circ}$. Encontrándose $0,05^{\circ}$ desplazado a la derecha en comparación con el algoritmo GA. También, su ángulo de ganancia máxima es $\angle G_{\phi=0}^{max} = 0^{\circ}$. Para el caso del algoritmo PSO de la Fig.3.31.b), su ancho de banda es igual al ancho de haz del algoritmo BA. Siendo su $HPBW_{\phi=0} = 70^{\circ}$ con su ángulo de ganancia máxima $\angle G_{\phi=0}^{max} = 0^{\circ}$. Para la Fig.3.31.c) del algoritmo GA, su ancho de haz es $HPBW_{\phi=0} = 68^{\circ}$, siendo el mas angosto que el algoritmo PSO si se compara. Como los otros algoritmos su ángulo de ganancia máxima es $\angle G_{\phi=0}^{max} = 0^{\circ}$.

En las dos prioridades analizadas, los tres algoritmos presentan diferentes resultados y en otras ocasiones valores de parámetros cercanos. En el caso de la prioridad BW, el algoritmo PSO encontró el mejor ancho de banda pero la función objetivo obtiene un valor de 7 parámetros y no solo del ancho de banda, por tal motivo, el algoritmo que presentó el menor valor objetivo fue el algoritmo BA con F(x) = 4,6291. Dicho resultado lo obtuvo en la iteración $Ite_{Obj} = 28$, casi por culminar el total de iteraciones establecidas. En cambio, en la prioridad G, los tres algoritmos presentan valores de la función objetivo cercano. Como la prioridad anterior, el algoritmo PSO obtuvo el mejor ancho de banda y ganancia pero en los parámetros restantes, el algoritmo BA tiene mejores resultados. En conjunto con los siete parámetros, el algoritmo BA obtuvo el menor valor objetivo con F(x) = 3,6407 en la iteración $Ite_{Obj} = 10$. Le sigue el algoritmo GA con F(x) = 3,7442. En esta prioridad, los anchos de haces marca gran diferencia en la obtención del menor valor de la función objetivo.

La Tabla 3.33 resume todo los valores de los parámetros obtenidos de cada algoritmo y por prioridad, además, en la columna Ite_{Obj} indica la iteración que el algoritmo obtuvo su mejor valor objetivo. Con los descrito en párrafos anteriores, se logró cumplir el cuarto objetivo específico de esta tesis.

Ite_{Obj}	28	11	18	10	٢	16
F(x)	4.6291	5.1730	5.6399	3.6407	3.9871	3.7442
$\angle G^{max_{Oi}}_{\phi=0}$	0	0	0	0	0	0
$\angle G^{maxOi}_{\phi=90}$	0	0	1	0	0	0
$HPBW_{\phi=0}$	68	70	70	68	70	68
$HPBW_{\phi=90}$	6	6	10	6	6	6
$\delta \overline{G}_{\theta=1}$	0.0693	0.0810	0.1932	0.0752	0.0889	0.1338
G	16.5760	16.8353	16.2058	16.6621	16.8543	16.4903
BW	312	360	306	315	336	123
	BA	PSO	GA	BA	PSO	GA
	M	rioridad I	d	Ð	rioridad	I

Tabla 3.33Resumen de mejores resultados por algoritmo y por prioridad

CAPITULO IV: DISCUSIÓN DE RESULTADOS

- La antena del trabajo "Diseño de antenas de parche multicapas apiladas de banda ancha con alimentación diferencial basado en el algoritmo murciélago" A_I tiene una mejora de 25.5 % en su ancho de banda siendo menor a los 49.5 % de la presente tesis, eso es debido por el tipo de arreglo que esta construido. También, el ancho de haz es amplio en φ = 90 y φ = 0 por emitir un patrón de radiación como una solo antena y su ganancia es menor con 6.4 dBi. La cantidad de iteraciones requerida de A_I solo fue necesario 20, siendo 10 iteraciones menos que la tesis. EL algoritmo BA de A_I brindo mejores como la tesis en las dos prioridades trabajadas.
- El trabajo "Síntesis de agrupaciones de antenas por medio de optimización estocástica" A_{II} esta enfocado en una arreglo de antenas sobresaliendo el algoritmo PSO brindando una ganancia de 17 dBi con su ancho de haz en $\phi = 0$ con 31.7° siendo menos de la mitad del ancho de haz de la tesis, eso es debido a la mayor cantidad de antenas que contiene. En A_{II} y *Tesis* están centrado en 0° el lóbulo principal donde se encuentra la ganancia máxima. La cantidad de iteraciones requerida de A_{II} fue requerido 500 debido a la complejidad de su función objetivo y la cantidad de antenas siendo 16 distribuido en 4 filas.
- Si se utiliza una antena multicapa tendrás menores dimensiones pero poca ganancia y ancho de banda. Si se utiliza un arreglo lineal aumenta el ancho de banda significativamente con la ganancia pero solo se tiene mejora el ancho de haz en φ = 90. Por ultimo, si se trabaja un arreglo planar la ganancia aumenta y el ancho de haz disminuye para φ = 90 y φ = 0 pero requerirá de muchas iteraciones para lograr el objetivo. Todo lo mencionado se muestra en la Tabla 3.34.

Tabla 3.34 Comparación de la antena parche serial */ : Valor no mencionado

Ite	20	500	30
T_{Ant}	Multicapas	Planar	Lineal
$\delta \overline{G}_{\theta=1}$	*/	*/	0.0752
$\angle G^{maxOi}_{\phi=0}$	0	0	0
$\angle G^{max_Oi}_{\phi=90}$	0	0	0
$HPBW_{\phi=0}$	87	31.7	68
$HPBW_{\phi=90}$	93	28.7	6
G	6.4	17	16.6621
BW	25.5%	*/	49.5%
Longitud	50x50	*/	61.5x61.5
	A_I	A_{II}	Tesis

CAPITULO V: CONCLUSIONES

A lo largo de la investigación, se lograron con éxito los objetivos planteados para la optimización de la antena serial de 8 parches mediante algoritmos bio-inspirados.

En el marco del primer objetivo específico, se estableció una función objetivo que incorpora siete parámetros de la antena, contemplando prioridades tanto para el ancho de banda como para la ganancia. Esta función demostró su eficacia al guiar los algoritmos (Murciélago, PSO, GA) hacia soluciones que cumplen con las prioridades de optimización.

La adaptación de los algoritmos se llevó a cabo mediante la inclusión de funciones vinculadas con macros al simulador electromagnético. Esta estrategia permitió un análisis comparativo efectivo de la eficacia de los algoritmos en la optimización de la antena serial de 8 parches.

Al analizar la eficacia de los algoritmos en función de la priorización de los parámetros para mejorar la antena, se observó que, en ambos casos de prioridad, el algoritmo PSO destacó por su rendimiento superior en términos de ancho de banda y ganancia. Sin embargo, el algoritmo BA se reveló como el más apropiado al obtener un valor objetivo menor, demostrando su eficiencia en la optimización de la antena.

En la comparación final de los resultados obtenidos por los tres algoritmos, se concluyó que, a pesar de la rapidez y eficacia del PSO, el BA se posiciona como la elección preferida, especialmente al priorizar la ganancia. Estas conclusiones respaldan de manera integral la efectividad de la metodología implementada en la optimización de la antena serial de 8 parches.

RECOMENDACIONES

En el proceso de optimización para la antena de parche en serie, se recomienda realizar un análisis detallado de los parámetros involucrados. Esto implica entender cómo ajustar un parámetro puede afectar a otros, lo cual facilitará la toma de decisiones informadas durante la optimización. Asimismo, se sugiere explorar la sensibilidad cruzada entre los parámetros para obtener una comprensión más profunda de la interdependencia de los elementos del diseño.

Además, se recomienda la inclusión de restricciones adicionales en la función objetivo también se presenta como una estrategia valiosa para mejorar la aplicabilidad de las soluciones encontradas, reflejando limitaciones prácticas en los valores de los parámetros.

La investigación de algoritmos específicamente diseñados para la optimización multiobjetivo, como NSGA-II o SPEA2, es recomendada como una alternativa eficiente para mejorar más de un aspecto a la vez. Visualizar el frente de Pareto resultante de esta optimización proporciona una representación gráfica clara de soluciones no dominadas, facilitando la toma de decisiones fundamentada en el diseño de la antena.

Para adaptarse a cambios en las prioridades del diseño, se recomienda diseñar la función objetivo de manera que pueda ajustarse. La introducción de parámetros de ajuste que modifiquen la importancia relativa de los objetivos permite una mayor flexibilidad durante el proceso de optimización. Además, se sugiere explorar cómo los algoritmos se comportan en escenarios dinámicos, adaptándose a cambios constantes en objetivos y restricciones, lo cual es esencial para garantizar una adaptabilidad efectiva a condiciones en constante cambio.

La validación experimental de las soluciones obtenidas a través de la optimización es crucial y se recomienda para asegurar que sean aplicables en situaciones prácticas y verificar la eficacia de la función objetivo multi-objetivo. Por último, se recomienda optimizar la implementación de los algoritmos para manejar eficientemente el alto número de objetivos en juego, garantizando un rendimiento rápido y eficaz incluso con múltiples aspectos a mejorar.

PRESPECTIVA

En el ámbito de la optimización de antenas de parche en serie, este estudio proporciona una sólida base para futuras investigaciones que podrían ampliar significativamente el alcance y la aplicabilidad de los resultados obtenidos. Una dirección sugerente para la continuación de este trabajo sería la expansión del enfoque actual hacia arreglos de antenas más grandes, como un arreglo de 8x8 elementos. Esto permitiría una evaluación más detallada de las capacidades de optimización en configuraciones más complejas y extensas

Además, la inclusión de funciones objetivo adicionales podría ser clave para enriquecer la investigación. Considerar parámetros más detallados del rendimiento de la antena, como la relación señal-ruido, la eficiencia energética y la capacidad para resistir interferencias, abriría nuevas oportunidades para la mejora del arreglo de antenas y su adaptabilidad a diferentes contextos.

Una dirección emocionante para futuras investigaciones podría ser la implementación de técnicas de beamforming en el arreglo de antenas optimizado. Esta aplicación podría mejorar significativamente la dirección y concentración de la señal, ofreciendo oportunidades valiosas para aplicaciones como comunicaciones avanzadas o sistemas de radar.

Explorar la respuesta del arreglo de antenas a múltiples funciones objetivo sería otro paso interesante. Este enfoque multifunción permitiría una adaptación más específica a diferentes aplicaciones y escenarios, maximizando la versatilidad del sistema.

Considerar la integración de tecnologías emergentes, como la inteligencia artificial o nuevos materiales, podría catapultar aún más el rendimiento del arreglo de antenas hacia el futuro, abriendo nuevas posibilidades y desafíos.

Para respaldar los resultados teóricos, se podría llevar a cabo una validación experimental en entornos del mundo real, proporcionando una perspectiva más completa sobre la aplicabilidad práctica de los hallazgos. Finalmente, explorar cómo las mejoras en el arreglo de antenas podrían impactar aplicaciones específicas, como la comunicación 5G, el Internet de las cosas (IoT) o la detección remota, ofrecería una comprensión más profunda de las aplicaciones prácticas de esta investigación.

En resumen, estas perspectivas futuras destacan áreas emocionantes y desafiantes para la investigación en optimización de antenas, señalando la relevancia continua de esta tesis en el panorama tecnológico en constante evolución.

BIBLIOGRAFÍA

- 3GPP. (2021). 3rd generation partnership project: 3gpp ts 38.101–2. 3GPP, V16.4.0. Descargado de https://www.3gpp.org/ftp/Specs/archive/38_series/38.101-2/.
- Aboserwal, N. A., Salazar, J. L., Ortiz, J. A., Díaz, J. D., Fulton, C., y Palmer, R. D. (2018). Source current polarization impact on the cross-polarization definition of practical antenna elements: Theory and applications. *IEEE Transactions on Antennas and Propagation*, 66(9), 4391-4406. doi: 10.1109/TAP.2018.2845945
- Altshuler, E. (2002). Electrically small self-resonant wire antennas optimized using a genetic algorithm. *IEEE Transactions on Antennas and Propagation*, 50(3), 297-300. doi: 10.1109/8.999619
- Arce Casas, A. (2008). Síntesis de agrupaciones de antenas por medio de optimización estocástica (Tesis Doctoral no publicada). Tesis de maestría en ciencias en electrónica y telecomunicaciones, CICESE. 83pp.
- Balanis, C. A. (2008). Modern antenna handbook. John Wiley & Sons.
- Balanis, C. A., y Ioannides, P. I. (2007). Introduction to smart antennas. Synthesis Lectures on Antennas, 2(1), 1–175.
- Bansal, A., Sethi, G., y Sharma, S. (2018). Pso optimized nested slot structure rfid tag antenna at 5.8 ghz for metallic applications. En 2018 2nd international conference on micro-electronics and telecommunication engineering (icmete) (p. 81-84). doi: 10 .1109/ICMETE.2018.00029
- Carsenat, D., y Decroze, C. (2012). Uwb antennas beamforming using passive time-reversal device. *IEEE Antennas and Wireless Propagation Letters*, 11, 779-782. doi: 10.1109/ LAWP.2012.2207872
- Chen, G., Qian, J., Zhang, Z., y Sun, Z. (2019). Multi-objective optimal power flow based on hybrid firefly-bat algorithm and constraints- prior object-fuzzy sorting strategy. *IEEE Access*, 7, 139726-139745. doi: 10.1109/ACCESS.2019.2943480
- Chen, Z.-N., Liu, D., Nakano, H., Qing, X., y Zwick, T. (2016). Handbook of antenna technologies. En *Handbook of antenna technologies* (Vol. 1, pp. XXXI, 3473). United States:
 Springer Publishing Company. (Publisher Copyright: © Springer Science+Business Media Singapore 2016. All rights reserved.) doi: 10.1007/978-981-4560-44-3

- Deng, H., y Himed, B. (2009). A virtual antenna beamforming (vab) approach for radar systems by using orthogonal coding waveforms. *IEEE Transactions on Antennas and Propagation*, 57(2), 425-435. doi: 10.1109/TAP.2008.2011387
- Dey, N. (2020). Applications of firefly algorithm and its variants. Springer.
- Ding, Y.-H., y You, W.-B. (2020). Sensor placement optimization based on an improved inertia and adaptive particle swarm algorithm during an explosion. *IEEE Access*, 8, 207089-207096. doi: 10.1109/ACCESS.2020.3038168
- Dong, C., Xiong, Z., Liu, X., Ye, Y., Yang, Y., y Guo, W. (2019). Dual-search artificial bee colony algorithm for engineering optimization. *IEEE Access*, 7, 24571-24584. doi: 10.1109/ACCESS.2019.2899743
- Dziwiński, P., y Bartczuk, □. (2020). A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic. *IEEE Transactions on Fuzzy Systems*, 28(6), 1140-1154. doi: 10.1109/TFUZZ.2019.2957263
- Eberhart, R., y Shi, Y. (2000a). Comparing inertia weights and constriction factors in particle swarm optimization. En *Proceedings of the 2000 congress on evolutionary computation. cec00 (cat. no.00th8512)* (Vol. 1, p. 84-88 vol.1). doi: 10.1109/ CEC.2000.870279
- Eberhart, R., y Shi, Y. (2000b). Comparing inertia weights and constriction factors in particle swarm optimization. En *Proceedings of the 2000 congress on evolutionary computation. cec00 (cat. no.00th8512)* (Vol. 1, p. 84-88 vol.1). doi: 10.1109/ CEC.2000.870279
- Eusuff, M. M., y Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. *Journal of Water Resources planning and management*, 129(3), 210–225.
- Farasat, M., Thalakotuna, D. N., Hu, Z., y Yang, Y. (2021). A review on 5g sub-6 ghz base station antenna design challenges. *Electronics*, *10*(16), 2000.
- Feng, Y., Zhang, W., Han, G., Kang, Y., y Wang, J. (2020). A newborn particle swarm optimization algorithm for charging-scheduling algorithm in industrial rechargeable sensor networks. *IEEE Sensors Journal*, 20(18), 11014-11027. doi: 10.1109/JSEN .2020.2994113
- Gao, Y., Wang, J., Gao, S., y Cheng, Y. (2021). An integrated robust design and robust control strategy using the genetic algorithm. *IEEE Transactions on Industrial Informatics*,

17(12), 8378-8386. doi: 10.1109/TII.2021.3056417

- Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning (1.ª ed.). Addison-Wesley Professional. Descargado de libgen.li/file.php?md5= 8ac0783ba24b71236b695cbdfab2ca67
- GSMA. (2021). 5g spectrum gsma public policy position. 5G SPECTRUM. Descargado de https://www.gsma.com/spectrum/wp-content/uploads/2022/06/5G-Spectrum -Positions.pdf
- Gupta, A. (2021). Bat optimization algorithm. MATLAB Central File Exchange. Descargado de https://www.mathworks.com/matlabcentral/fileexchange/68981
 -bat-optimization-algorithm
- Ieee standard definitions of terms for antennas. (1983). *IEEE Std 145-1983*, 1-31. doi: 10.1109/IEEESTD.1983.82386
- Jin, N., y Rahmat-Samii, Y. (2005). Parallel particle swarm optimization and finite- difference time-domain (pso/fdtd) algorithm for multiband and wide-band patch antenna designs. *IEEE Transactions on Antennas and Propagation*, 53(11), 3459-3468. doi: 10.1109/ TAP.2005.858842
- Josefsson, L., y Persson, P. (2006). *Conformal array antenna theory and design*. John wiley & sons.
- Kamran, M., Abd Rahman, T., Yamada, Y., y Sakakibara, K. (2017, 09). 8x8 phased series fed patch antenna array at 28 ghz for 5g mobile base station antennas.. doi: 10.1109/ APWC.2017.8062268
- Kaur, S., Srivastava, M., Sharma, N. K., Bhatia, K. S., Yimam, F. A., Kaur, H., y Bajaj, M. (2021). Hybrid local-global optimum search using particle swarm gravitation search algorithm (hlgos-psgsa) for waveguide selection. *IEEE Access*, *9*, 127866-127882. doi: 10.1109/ACCESS.2021.3112069
- Kennedy, J., y Eberhart, R. (1995). Particle swarm optimization. En Proceedings of icnn '95 international conference on neural networks (Vol. 4, p. 1942-1948 vol.4). doi: 10.1109/ ICNN.1995.488968
- Kerkhoff, A. J., y Ling, H. (2007). Design of a band-notched planar monopole antenna using genetic algorithm optimization. *IEEE Transactions on Antennas and Propagation*, 55(3), 604-610. doi: 10.1109/TAP.2007.891563

Korani, W. (2021). Particle swarm optimization. MATLAB Central File Exchange. Descarga-

do de https://www.mathworks.com/matlabcentral/fileexchange/20205-particle-swarm -optimization

- Kumar, A. S. (2017). Rectangular micro strip antenna design using particle swarm optimiztion,neural networks and genetic algorithms. En 2017 ieee international conference on computational intelligence and computing research (iccic) (p. 1-5). doi: 10.1109/ICCIC.2017.8523827
- Kumar, N., y Kumar Sharma, S. (2018). Inertia weight controlled pso for task scheduling in cloud computing. En 2018 international conference on computing, power and communication technologies (gucon) (p. 155-160). doi: 10.1109/GUCON.2018.8674994
- Li, F., Ji, W., Tan, S., Xie, Y., Guo, X., Liu, H., y Yao, Y. (2020). Quantum bacterial foraging optimization: From theory to mimo system designs. *IEEE Open Journal of the Communications Society*, 1, 1632-1646. doi: 10.1109/OJCOMS.2020.3031449
- Li, J.-Q., Song, M.-X., Wang, L., Duan, P.-Y., Han, Y.-Y., Sang, H.-Y., y Pan, Q.-K. (2020).
 Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs. *IEEE Transactions on Cybernetics*, *50*(6), 2425-2439.
 doi: 10.1109/TCYB.2019.2943606
- Liang, H., Liu, Y., Shen, Y., Li, F., y Man, Y. (2018). A hybrid bat algorithm for economic dispatch with random wind power. *IEEE Transactions on Power Systems*, 33(5), 5052-5061. doi: 10.1109/TPWRS.2018.2812711
- Liang, X., Yin, W., Chen, A., Zhang, Z., Zeng, J., Shi, L., ... Zi, J. (2020). Ultrawideband, wide scanning stripline-fed tightly coupled array antenna based on parallel-dipole elements. *Sensors*, 20(18), 5065.
- Lin, M., Wang, Z., y Wang, F. (2019). Hybrid differential evolution and particle swarm optimization algorithm based on random inertia weight. En 2019 34rd youth academic annual conference of chinese association of automation (yac) (p. 411-414). doi: 10 .1109/YAC.2019.8787698
- Markus Voelter, U. Z., Michael Kircher. (2003). *Antenna theory design* (Rev Sub ed.). Wiley-IEEE Press. Descargado de http://gen.lib.rus.ec/book/index.php?md5= 10d0d53b5bfb84cfe053235864d72e5f
- Mercangöz, B. A. (2021). *Applying particle swarm optimization: New solutions and cases for optimized portfolios 306* (1.^a ed.). Springer. Descargado de libgen.li/file.php?md5= 6f86b77fd2262c6562f031707ed3bd38

- Miura, R., Tanaka, T., Chiba, I., Horie, A., y Karasawa, Y. (1997). Beamforming experiment with a dbf multibeam antenna in a mobile satellite environment. *IEEE Transactions* on Antennas and Propagation, 45(4), 707-714. doi: 10.1109/8.564097
- Moayedi, H., Bui, D. T., y Thi Ngo, P. T. (2020). Shuffled frog leaping algorithm and winddriven optimization technique modified with multilayer perceptron. *Applied Sciences*, *10*(2), 689.
- Palomino de la Gala, M., y cols. (2016). Examen de las políticas de ciencia, tecnología e innovación del perú: logros y desafíos de las políticas públicas de cti perú.
- Pan, Y., y Zhang, J. (2019). Side lobes suppression for linear antenna array by using bat algorithms. En 2019 cross strait quad-regional radio science and wireless technology conference (csqrwc) (p. 1-2). doi: 10.1109/CSQRWC.2019.8799193
- Pozar, D. M. (2011). Microwave engineering. John wiley & sons.
- Presnell, R. (1974). A limited-scan phased-array antenna for use with a clutter-mapping radar system. *IEEE Transactions on Antennas and Propagation*, 22(4), 599-603. doi: 10.1109/TAP.1974.1140857
- Pumallica-Paro, M. A., Arizaca-Cusicuna, J. L., y Clemente-Arenas, M. (2019). A multiobjective genetic algorithm for analysis, design and optimization of antipodal vivaldi antennas. En 2019 ieee-aps topical conference on antennas and propagation in wireless communications (apwc) (p. 316-321). doi: 10.1109/APWC.2019.8870420
- Remcom. (2019). Em simulation of 28 ghz series-fed patch antenna array for 5g. Remcom Electromagnetic Simulation Software(1), 1–6. Descargado de https://es.remcom.com/ examples/2018/7/25/em-simulation-of-28-ghz-series-fed-patch-antenna-array-for-5g
- Rodriguez-Guerrero, M. A., Jaen-Cuellar, A. Y., Carranza-Lopez-Padilla, R. D., Osornio-Rios, R. A., Herrera-Ruiz, G., y Romero-Troncoso, R. d. J. (2018). Hybrid approach based on ga and pso for parameter estimation of a full power quality disturbance parameterized model. *IEEE Transactions on Industrial Informatics*, 14(3), 1016-1028. doi: 10.1109/TII.2017.2743762
- Rodríguez-San Pedro, A., Allendes, J., Carrasco-Lagos, P., y Moreno, R. (2014). *Murciélagos de la región metropolitana de santiago, chile*. Seremi del Medio Ambiente Región Metropolitana de Santiago, Universidad Santo Tomás y Programa para la Conservación de los Murciélagos de Chile (PCMCh).

Rousis, A. O., Konstantelos, I., y Strbac, G. (2020). A planning model for a hybrid ac-dc

microgrid using a novel ga/ac opf algorithm. *IEEE Transactions on Power Systems*, 35(1), 227-237. doi: 10.1109/TPWRS.2019.2924137

- SeckTuoh, J., Medina, J., y Hernandez, N. (2016). Introduccion a los algoritmos geneticos con matlab. Univerisidad Autonoma del Estado de Hidalgo. Descargado de https://www.uaeh.edu.mx/docencia/P_Lectura/icbi/asignatura/introduccion_a los algoritmos geneticos con matlab.pdf
- Shao, Z., Qiu, L., y Zhang, Y. P. (2020). Design of wideband differentially fed multilayer stacked patch antennas based on bat algorithm. *IEEE Antennas and Wireless Propagation Letters*, 19(7), 1172-1176. doi: 10.1109/LAWP.2020.2994158
- Silva, J. V. (2013). Optimización del diseño de antenas yagi-uda usando algoritmos genéticos. Pontificia Universidad Católica del Perú. Descargado de http://hdl.handle.net/20.500 .12404/4846
- Stutzman, W. L., y Thiele, G. A. (2012). Antenna theory and design. John Wiley & Sons.
- Sun, G., Liu, Y., Chen, Z., Liang, S., Wang, A., y Zhang, Y. (2018). Radiation beam pattern synthesis of concentric circular antenna arrays using hybrid approach based on cuckoo search. *IEEE Transactions on Antennas and Propagation*, 66(9), 4563-4576. doi: 10.1109/TAP.2018.2846771
- Sun, Y., Dong, W., y Chen, Y. (2017). An improved routing algorithm based on ant colony optimization in wireless sensor networks. *IEEE Communications Letters*, 21(6), 1317-1320. doi: 10.1109/LCOMM.2017.2672959
- Van Luyen, T., y Vu Bang Giang, T. (2017). Interference suppression of ula antennas by phase-only control using bat algorithm. *IEEE Antennas and Wireless Propagation Letters*, 16, 3038-3042. doi: 10.1109/LAWP.2017.2759318
- Wang, L., Zhang, X., y Zhang, X. (2019). Antenna array design by artificial bee colony algorithm with similarity induced search method. *IEEE Transactions on Magnetics*, 55(6), 1-4. doi: 10.1109/TMAG.2019.2896921
- Wang, Y., y Zhu, Q. (2021). A hybrid genetic algorithm for flexible job shop scheduling problem with sequence-dependent setup times and job lag times. *IEEE Access*, 9, 104864-104873. doi: 10.1109/ACCESS.2021.3096007
- Wang, Z., Xie, H., He, D., y Chan, S. (2019). Wireless sensor network deployment optimization based on two flower pollination algorithms. *IEEE Access*, 7, 180590-180608. doi: 10.1109/ACCESS.2019.2959949

- Weng, W.-C., Yang, F., y Elsherbeni, A. (2007). Electromagnetics and antenna optimization using taguchi's method. Synthesis Lectures on Computational Electromagnetics, 2(1), 1–94.
- Whitley, D. (1994). A genetic algorithm tutorial. *Statistics and computing*, 4(2), 65–85.
- Xu, Z., Zhuang, L., Tian, S., He, M., Yang, S., Song, Y., y Ma, L. (2020). Energy-driven virtual network embedding algorithm based on enhanced bacterial foraging optimization. *IEEE Access*, 8, 76069-76081. doi: 10.1109/ACCESS.2020.2988320
- Yang, X.-S. (2010a). Firefly algorithm, levy flights and global optimization. En *Research and development in intelligent systems xxvi* (pp. 209–218). Springer.
- Yang, X.-S. (2010b). A new metaheuristic bat-inspired algorithm. En Nature inspired cooperative strategies for optimization (nicso 2010) (p. 65-74). Springer.
- Yang, X.-S. (2013). Cuckoo search and firefly algorithm: theory and applications (Vol. 516). Springer.
- Yang, X.-S. (2017). *Nature-inspired algorithms and applied optimization* (Vol. 744). Springer.
- Yang, X.-S. (2020). Nature-inspired optimization algorithms. Academic Press.
- Yang, X.-S., y Deb, S. (2009). Cuckoo search via lévy flights. En 2009 world congress on nature biologically inspired computing (nabic) (p. 210-214). doi: 10.1109/NABIC .2009.5393690
- Yang, X.-S., y Gandomi, A. H. (2012). Bat algorithm: a novel approach for global engineering optimization. *Engineering computations*.
- Yoshida, S., Suzuki, Y., Ta, T. T., Kameda, S., Suematsu, N., Takagi, T., y Tsubouchi, K. (2013). A 60-ghz band planar dipole array antenna using 3-d sip structure in small wireless terminals for beamforming applications. *IEEE Transactions on Antennas and Propagation*, 61(7), 3502-3510. doi: 10.1109/TAP.2013.2257643

ANEXOS ANEXO 1: TABLA DE RESULTADOS COMPLETOS

Tabla 6.1

Parámetros óptimos BA Prioridad BW

	Prioridad BW	F(x)	5.6249	7.7009	13.4303	5.3006	5.7494	5.2107	6.4812	5.2683	5.6494	5.4757	13.1869	5.3008	4.6291	12.9211	5.3642	6.0416	5.8357	20.1703	5.2254	13.9739	100
		$\angle G^{maxOi}_{\phi=0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
S BA		$\angle G^{max_Oi}_{\phi=90}$	1	2	8	0	2	2	0	0	2	2	10	0	0	8	1	2	0	14	0	8	75
OMITAÓ SC	tros	$HPBW_{\phi=0}$	70	72	59	69	71	70	72	69	71	71	58	70	68	57	70	72	72	79	70	61	100
PARÁMETRO	Parámet	$HPBW_{\phi=90}$	10	14	50	6	6	~	10	10	8	8	50	6	6	50	6	6	6	50	6	50	75
		$\delta \overline{G}_{\theta=1}$	0.2438	0.1914	0.8528	0.1374	0.4003	0.4842	0.0678	0.0691	0.5990	0.6323	0.2544	0.1161	0.0693	0.7152	0.1776	0.4394	0.1254	0.3470	0.0919	0.4792	100
		G	16.2903	14.4336	13.8074	14.8256	16.4323	16.3845	14.7106	16.2259	15.7407	16.6371	14.2093	16.3447	16.5760	13.1358	16.3290	16.4733	16.6185	13.3824	16.7006	14.0061	100
		BW	312	39	129	132	162	186	21	120	144	105	60	81	312	495	309	177	189	126	111	108	100
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	%

AD BW		L_3 L_4	3.2596 5.0000	4.3688 3.8023	3.0000 5.0000	4.4791 3.4417	3.4630 5.0000	3.0334 4.6026	3.1378 4.5234	3.1254 4.7638	3.0000 5.0000	3.5602 4.5725	3.3638 4.8605	3.0000 4.4911	3.0610 4.0612	3.0000 4.7467	3.2960 5.0000	3.9074 3.0574	3.9040 3.1571	3.4778 4.8859	3.8453 4.3327	3.2170 4.1677	
VTO PRIORIDA		L_2	4.2734	3.6642	5.0000	3.1702	5.0000	4.5283	3.3607	3.2852	5.0000	4.6248	3.9508	4.3847	3.7637	4.3218	3.8918	4.7845	3.4760	4.0265	3.2881	5.0000	
CADA INTEN	siones	L_1	3.8042	5.0000	4.6272	3.1440	3.7124	3.8309	3.0379	3.8615	3.8881	3.7387	4.4532	3.5620	3.5400	5.0000	3.8857	3.9570	4.0172	5.0000	3.46061	4.4792	
TENA BA EN	Dimen	W_4	3.1158	3.2418	4.0981	3.9677	3.5186	3.6832	3.8075	3.1898	3.3814	3.2990	4.1800	3.4241	3.0000	5.0000	3.0000	3.7173	3.6314	3.9815	3.0622	4.2598	
IALES DE AN		W_3	3.8522	3.0072	3.2286	3.0000	3.2791	3.1397	3.7803	3.1243	3.0202	3.3143	3.2170	3.6916	4.1343	3.0000	3.4920	3.0995	3.4625	3.7703	3.2132	3.0000	
NSIONES FIN		W_2	3.3153	3.8745	3.0408	3.6268	3.0070	3.5598	3.6317	4.5455	3.5455	3.5926	3.7833	3.0000	3.8922	3.0000	3.8671	3.2245	3.3431	4.8179	4.3400	3.3145	[12 AA 4 017
DIME		W_1	3.0000	3.0000	3.7229	3.0704	3.6845	3.5132	3.8472	3.4610	3.3202	3.5593	3.6859	3.8948	3.2593	3.1782	3.0000	3.3812	3.3590	3.5012	3.7283	3.2116	
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	Variaaión

Tabla 6.2 Dimensiones óptimas BA con prioridad BW

	Prioridad G	F(x)	4.1923	3.6407	7.5342	4.0516	4.5203	4.1080	4.4919	10.5532	4.4237	7.6759	4.0790	7.0403	4.3136	4.2109	7.1224	4.1242	5.5803	4.0419	4.1063	4.7075	100
S		$\angle G^{maxOi}_{\phi=0}$	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	100
ANTENA		$\angle G^{maxOi}_{\phi=90}$	0	0	7	0	2	0	0	10	1	8	0	8	1	1	11	0	2	0	1	2	75
MOS DE LAS	tros	$HPBW_{\phi=0}$	70	68	60	70	71	69	72	75	71	60	70	57	70	70	53	70	70	70	70	72	100
ETROS ÓPTI	Paráme	$HPBW_{\phi=90}$	6	6	50	6	6	10	6	50	6	50	6	50	6	6	50	6	15	6	8	6	75
PARÁMI		$\delta \overline{G}_{\theta=1}$	0.1161	0.0752	0.8726	0.1315	0.4003	0.0691	0.1254	0.3422	0.4299	0.3790	0.1071	0.7152	0.2070	0.1776	0.8802	0.1091	0.1637	0.1167	0.2653	0.4394	100
		G	16.3447	16.6621	13.6643	16.6261	16.4323	16.2259	16.6185	14.638	16.6487	13.3760	16.5335	13.1358	16.0972	16.3290	14.0308	16.6122	13.8712	16.6659	16.6061	16.4733	100
		BW	81	315	168	318	162	120	189	138	42	120	300	495	165	309	303	84	57	315	108	177	100
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	%

Tabla 6.3Parámetros óptimos BA Prioridad Ganancia

		L_4	4.4911	4.0802	4.6633	4.0682	5.0000	4.7638	3.1571	5.0000	4.8003	3.2456	3.4167	4.7467	3.0000	5.0000	4.4527	3.6851	3.7106	4.9913	4.7842	3.0574	[3.00 - 5.00]
AD GAIN		L_3	3.0000	3.0510	3.0000	3.0000	3.4630	3.1254	3.9040	3.0000	3.4336	5.0000	3.5711	3.0000	3.1430	3.2960	3.0000	3.1255	3.0254	3.8106	3.8491	3.9074	[3.00 - 5.00]
TO PRIORID		L_2	4.3847	3.7637	5.0000	3.3745	5.0000	3.2852	3.4760	4.2910	4.4750	5.0000	3.7004	4.3218	4.6754	3.8918	5.0000	3.4589	3.8132	3.2840	3.6637	4.7845	[3.28 - 5.00]
CADA INTEN	siones	L_1	3.5620	3.6405	5.0000	3.8878	3.7124	3.8615	4.0172	4.2777	3.9368	4.4032	3.773	5.0000	4.0536	3.8857	4.5205	3.7422	5.0000	3.5639	3.8181	3.9570	[3.54 - 5.00]
JENA BA EN (Dimen	W_4	3.4241	3.0000	4.3347	3.6637	3.5186	3.1898	3.6314	4.4517	3.338	3.071	3.4723	5.0000	3.4607	3.0000	3.8737	4.1582	3.0000	3.1820	3.0000	3.7173	[3.00 - 5.00]
NLES DE ANT		W_3	3.6916	4.1563	3.0000	3.6030	3.2791	3.1243	3.4625	3.4067	3.4739	3.4121	3.0585	3.0000	3.5748	3.4920	3.5962	3.1355	4.1328	3.0700	3.1326	3.0995	[3.00 - 4.13]
SIONES FINA		W_2	3.0000	3.8942	3.0653	3.3925	3.0070	4.5455	3.3431	3.1679	3.0829	3.2977	3.8012	3.0000	3.2962	3.8671	3.9422	3.5722	3.7750	4.2397	4.0000	3.2245	[3.00 - 4.54]
DIMEN		W_1	3.8948	3.2613	3.6501	3.5978	3.6845	3.4610	3.3590	4.3294	3.4947	3.0000	3.7427	3.1782	3.3603	3.0000	3.0551	3.7646	3.0000	3.3169	3.4186	3.3812	[3.00 - 4.32]
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	Variación

Tabla 6.4Dimensiones óptimas BA con prioridad Ganancia

	Driveidad RW	F(x)	16.2464	5.1919	5.1890	16.4893	5.1730	19.0944	5.5227	16.6026	16.8548	17.2712	14.7148	5.1858	5.1909	16.5595	5.1739	5.3364	5.4797	5.1909	5.1739	16.5653	100
Ma Or	M D M	$\angle G_{max0^{i}}^{max0^{i}}$	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	100
DU S VULL		$\angle G^{maxOi}_{i}$	14	0	0	10	0	18	0	11	10	11	8	0	0	10	0	-	0	0	0	11	55
N D T T T D	DE LAD AL	$HPBW_{h=0}$	68	70	70	70	70	92	71	70	71	72	64	70	70	70	70	70	71	70	70	70	100
	Daráma	$HPBW_{A=00}$	50	6	6	50	6	50	6	50	50	50	50	6	6	50	6	6	6	6	6	50	55
		$\delta \overline{G}_{\theta-1}$		0.0809	0.1054		0.0810		0.1031				0.6820	0.0901	0.0901		0.0889	0.1599	0.1289	0.0901	0.0889	1	60
1 V U	IAI	9	15.6770	16.8606	16.8693	15.7561	16.8353	14.9352	16.6975	15.6478	15.5438	15.3680	15.0478	16.8651	16.8783	15.5251	16.8386	16.5938	16.8168	16.8783	16.8386	15.7866	100
		BW	102	120	144	315	360	306	150	198	84	72	117	150	66	75	348	48	354	66	348	294	100
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	%

Tabla 6.5 Parámetros óptimos PSO Prioridad BW

		L_4	4.1475	3.5761	3.6069	4.0466	3.5328	4.2189	3.7721	4.0462	3.7953	3.9043	4.3094	3.5327	3.5663	4.0010	3.5416	3.4427	3.5557	3.5663	3.5416	4.3578	[3.53 - 4.35]
DAD BW		L_3	4.0921	3.5687	3.6110	4.0419	3.6330	4.1208	3.5618	4.0112	4.0558	3.9334	4.1817	3.6114	3.6402	3.9863	3.5783	3.3891	3.7516	3.6402	3.5783	4.0840	[3.56 - 4.18]
NTO PRIORI		L_2	4.3661	3.5518	3.6286	4.3443	3.5697	4.3403	3.6442	4.1029	3.9950	3.9242	4.1545	3.6109	3.4725	3.9580	3.6598	3.4371	3.5238	3.4725	3.6598	4.0133	[3.43 - 4.36]
VICADA INTE	siones	L_1	3.9741	3.5696	3.5550	4.1018	3.5811	4.3018	3.5126	3.9582	3.8082	3.9081	4.2430	3.5849	3.6576	3.9332	3.6188	3.4775	3.7741	3.6576	3.6188	3.9599	[3.51 - 4.30]
FENA PSO EN	Dimen	W_4	3.9981	3.5688	3.6020	4.1404	3.5472	4.0137	3.6077	3.8128	3.9827	3.9262	3.4695	3.5603	3.5463	3.9181	3.4929	3.3325	3.4272	3.5463	3.4929	3.9136	[3.33 - 4.14]
ALES DE ANT		W_3	4.1199	3.5877	3.5019	4.0711	3.5331	4.1492	3.7054	3.9138	3.9056	3.9169	3.6375	3.5897	3.5385	3.8244	3.6159	4.3315	3.6173	3.5385	3.6159	3.7704	[3.50 - 4.33]
ISIONES FIN		W_2	4.0871	3.5613	3.5920	3.8542	3.5476	4.3711	3.2093	3.8794	3.9299	3.9135	3.6375	3.5350	3.6237	4.0118	3.4982	3.2750	3.4708	3.6237	3.4982	4.0354	[3.20 - 4.37]
DIMEN		W_1	4.2097	3.5654	3.5915	4.0903	3.5803	4.2998	3.9639	3.9213	3.8726	3.9076	3.7238	3.6704	3.6564	3.9245	3.6255	3.1055	3.6459	3.6564	3.6255	3.9245	[3.10 - 4.29]
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	Variación

Tabla 6.6 Dimensiones óptimas PSO con prioridad BW

	Prioridad G	F(x)	4.0478	4.2828	3.9871	4.0612	4.2464	9.3136	4.0402	9.2922	4.2464	4.0402	3.9955	8.7940	4.0055	9.2172	9.2172	4.0402	4.1930	9.2922	4.1829	4.0529	100
GAIN		$\angle G^{maxOi}_{\phi=0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
ENAS PSO		$\angle G^{maxOi}_{\phi=90}$	0	0	0	0	0	10	0	11	0	0	0	10	0	14	14	0	0	11	0	0	70
DE LAS ANT	tros	$HPBW_{\phi=0}$	70	71	70	70	71	70	70	70	71	70	70	72	70	68	68	70	71	70	71	70	100
S ÓPTIMOS I	Parámet	$HPBW_{\phi=90}$	6	6	6	6	6	50	6	50	6	6	6	50	6	50	50	9	6	50	6	9	70
METRO		$\delta \overline{G}_{\theta=1}$	0.1122	0.1031	0.0889	0.1086	0.1137		0.0901		0.1137	0.0901	0.1015		0.0942		-	0.0901	0.1289	-	0.0731	0.0901	70
PARÁ		G	16.8466	16.6975	16.8543	16.8606	16.8307	15.6111	16.8651	15.7866	16.8307	16.8651	16.8520	15.7402	16.8069	15.6770	15.6770	16.8651	16.8168	15.7866	16.8031	16.8755	100
		BW	144	150	336	87	162	102	150	294	162	150	312	393	315	102	102	150	354	294	390	66	100
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	%

Tabla 6.7 Parámetros óptimos PSO Prioridad Ganancia

		L_4	3.5082	3.7721	3.6264	3.4762	3.5349	3.9443	3.5327	4.3578	3.5349	3.5327	3.5951	4.1559	3.4730	4.1475	4.1475	3.5327	3.5557	4.3578	3.4055	3.5820	[3.40 - 4.35]
IDAD G		L_3	3.7317	3.5618	3.5376	3.7446	3.8278	3.9777	3.6114	4.0840	3.8278	3.6114	3.6148	4.0037	3.6837	4.0921	4.0921	3.6114	3.7516	4.0840	3.5868	3.6756	[3.53 - 4.09]
ENTO PRIOR		L_2	3.5317	3.6442	3.6674	3.4597	3.4008	3.9701	3.6109	4.0133	3.4008	3.6109	3.6331	4.0619	3.6339	4.3661	4.3661	3.6109	3.5238	4.0133	3.6513	3.4635	[3.40 - 4.36]
N CADA INTI	siones	L_1	3.6905	3.5126	3.6557	3.6379	3.6993	3.9019	3.5849	3.9599	3.6993	3.5849	3.5855	3.9659	3.5344	3.9741	3.9741	3.5849	3.7741	3.9599	3.5793	3.5926	[3.51 - 3.97]
TENA PSO E	Dimen	W_4	3.4434	3.6077	3.6432	3.5558	3.3859	3.9327	3.5603	3.9136	3.3859	3.5603	3.5055	3.9595	3.6109	3.9981	3.9981	3.5603	3.4272	3.9136	3.5682	3.5707	[3.38 - 3.99]
VALES DE AN		W_3	3.7078	3.7054	3.3594	3.6149	3.6495	3.8400	3.5897	3.7704	3.6495	3.5897	3.5767	3.6934	3.5388	4.1199	4.1199	3.5897	3.6173	3.7704	3.5940	3.5094	[3.35 - 4.11]
NSIONES FIN		W_2	3.4805	3.2093	3.6214	3.5351	3.5511	3.9280	3.5350	4.0354	3.5511	3.5350	3.5538	3.8513	3.4867	4.0871	4.0871	3.5350	3.4708	4.0354	3.4620	3.6423	[3.20 - 4.08]
DIME		W_1	3.6438	3.9639	3.5511	3.6373	3.6799	3.9295	3.6704	3.9245	3.6799	3.6704	3.5991	4.0910	3.6504	4.2097	4.2097	3.6704	3.6459	3.9245	3.6214	3.6540	[3.55 - 4.20]
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	Variación

Tabla 6.8 Dimensiones óptimas PSO con prioridad Ganancia

		PA	RÁMETI	SOS ÓPTIMO	S DE LAS AI	NTENAS G	A BW	
				Parámet	tros			Prioridad BW
	BW	G	$\delta \overline{G}_{\theta=1}$	$HPBW_{\phi=90}$	$HPBW_{\phi=0}$	$\angle G^{maxOi}_{\phi=90}$	$\angle G^{max_Oi}_{\phi=0}$	F(x)
Int_1	153	16.3497	0.0733	6	73	0	0	6.1904
Int_2	123	14.8795	0.1561	~	73	0	0	6.2416
Int_3	153	16.5877	0.3495	6	71		0	5.7366
Int_4	93	14.7097	0.6096	50	60	8		13.5612
Int_5	306	16.2058	0.1932	10	70		0	5.6399
Int_6	120	13.8652	0.2498	50	71	9	0	16.8295
Int_7	153	16.3497	0.0733	6	73	0	0	6.1904
Int_8	165	16.4603	0.1852	6	73		0	6.2527
Int_9	63	14.2343		50	50	11	0	13.8988
Int_{10}	96	14.4321		50	52	16	0	13.6560
Int_{11}	177	16.3866	0.2836	10	72		0	6.2212
Int_{12}	180	16.3694	0.1957	6	71		0	5.6699
Int_{13}	96	15.3386	0.1315	10	73	1	0	6.7313
Int_{14}	81	15.4482	0.0859	6	72	0	0	6.0785
Int_{15}	153	16.3497	0.0733	6	73	0	0	6.1904
Int_{16}	798	14.7740	0.1632	~	73	0	0	6.1956
Int_{17}	93	14.7097	0.6096	50	60	0	1	12.9212
Int_{18}	108	16.8024	0.1501	6	71	1	0	5.7882
Int_{19}	78	16.1903	0.0682	6	71	0	0	5.6495
Int_{20}	156	14.5512	0.2672	8	74	1	0	6.6895
%	100	100	60	75	100	75	100	100

Tabla 6.9 Parámetros óptimos GA Prioridad BW

			L_4	3.3686	3.7451	3.1412	3.9255	3.2588	4.0588	3.3686	3.0941	4.6314	4.4275	3.1330	4.9137	3.6745	3.6667	3.3686	3.9569	3.9255	4.0118	4.1686	4.4824	[3.09 - 4.91]
	UAU BW		L_3	4.1686	4.6235	3.6824	3.5490	3.2901	4.0902	4.1686	4.3255	4.1137	4.4039	4.1137	3.6275	3.7921	3.4706	4.1686	3.4314	3.5490	3.5255	3.2039	3.5020	[3.20 - 4.62]
			L_2	3.0235	3.0863	4.3961	4.9765	4.8196	3.4078	3.0235	3.1804	3.1569	4.4588	4.6627	3.2196	4.6235	3.5569	3.0235	3.5569	4.9765	3.8706	3.8862	3.3608	[3.02 - 4.97]
		siones	L_1	4.0118	3.6510	3.9490	4.1373	3.6039	4.7882	4.0118	4.0431	3.8157	3.6118	3.4863	3.9569	3.0313	3.1333	4.0118	4.2471	4.1373	3.7608	3.3450	4.3255	[3.03 - 4.78]
	I EINA GA EIN	Dimen	W_4	3.1647	3.0078	3.6824	3.6118	3.1176	3.2275	3.1647	3.4235	3.9176	4.0902	3.6824	3.0392	3.6745	3.9804	3.1647	3.3529	3.6118	3.2510	3.2588	3.0706	[3.00 - 4.09]
AT FO DE AN	ALES DE AIN		W_3	3.4157	3.3608	3.2118	3.5176	4.0745	4.1608	3.4157	3.4549	3.3294	4.2706	3.1804	3.2431	3.6117	4.0039	3.4157	3.3608	3.5176	3.7686	3.9882	3.3059	[3.21 - 4.27]
NELONING STRUCT	NDIONES FIL		W_2	4.1216	3.1804	3.2353	3.7922	3.2352	3.2353	4.1216	3.4627	4.6314	3.9804	3.5098	3.9647	3.0078	3.1412	4.1216	3.1804	3.7922	3.4235	3.0705	3.6745	[3.00 - 4.63]
	DIVE		W_1	3.0863	4.7569	3.7294	3.6039	3.5333	3.0941	3.0863	3.3373	4.8510	3.7137	3.2553	3.8314	3.0862	3.6118	3.0863	3.7216	3.6039	3.3608	4.7960	3.3294	[3.08 - 4.85]
				Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	Variación

Tabla 6.10Dimensiones óptimas GA con prioridad BW

		PAR	AMETRO	SOMITIÓ SO	DE LAS ANT	TENAS GA	GAIN	
				Parámet	cros			Prioridad G
	BW	С	$\delta \overline{G}_{\theta=1}$	$HPBW_{\phi=90}$	$HPBW_{\phi=0}$	$\angle G^{maxoi}_{\phi=90}$	$\angle G^{maxoi}_{\phi=0}$	F(x)
Int_1	96	14.4321	1	50	51	16	0	7.8902
Int_2	390	16.2915	0.6522	6	74	2	0	5.0997
Int_3	1131	16.0624	0.1946	8	72	1	0	4.3318
Int_4	393	16.4868	0.0778	6	71	0	0	4.2613
Int_5	174	16.2962	0.2688	10	70	1	0	4.3642
Int_6	129	16.4639	0.1535	6	72	1	0	4.6300
Int_7	69	15.7240	0.0765	6	70	0	0	4.3491
Int_8	123	16.4903	0.1338	6	68	0	0	3.7442
Int_9	66	16.2564	0.1047	6	71	0	0	4.4084
Int_{10}	96	15.3386	0.1315	10	73	1	0	5.2201
Int_{11}	78	16.1903	0.0682	6	71	0	0	4.4294
Int_{12}	111	16.5360	0.3224	6	70	1	0	4.2258
Int_{13}	285	14.8986	0.5028	50	62	8	0	7.7620
Int_{14}	75	13.8603	0.5214	50	62	6	0	8.0555
Int_{15}	123	16.4903	0.1338	6	68	0	0	3.7442
Int_{16}	81	16.3547	0.1149	8	70	0	0	4.0898
Int_{17}	111	16.3597	0.2403	10	70	1	0	4.3658
Int_{18}	309	16.6464	0.0746	10	70	0	0	4.1464
Int_{19}	132	14.9076	0.8190	8	75	2	0	5.6315
Int_{20}	195	16.1766	0.1502	10	71	1	0	4.5819
%	100	100	95	85	100	85	100	100

Tabla 6.11Parámetros óptimos GA Prioridad Ganancia

		L_4	4.4275	3.2196	3.5333	3.3529	4.1843	4.5058	3.0313	3.7607	4.1058	3.6745	4.1686	4.3411	4.9372	3.4078	3.7607	3.1803	4.2235	3.6823	3.3215	4.1843	[3.03 - 4.50]
DAD G		L_3	4.4039	5.0000	3.8078	3.1254	3.0784	3.8313	3.8392	3.1725	3.2039	3.7921	3.2039	3.2745	4.5843	3.0235	3.1725	3.4862	3.1176	3.2588	4.4588	3.4784	[3.02 - 5.00]
UNTO PRIORI		L_2	4.4588	3.9568	3.2509	4.1137	4.7725	3.2196	3.7764	3.8705	3.8000	4.6235	3.8862	4.8666	3.6431	4.3490	3.8705	3.7686	4.8352	3.8470	3.0156	4.7333	[3.01 - 4.86]
N CADA INTE	siones	L_1	3.6118	3.7137	4.1137	4.0431	3.7843	4.0823	3.2196	3.7137	4.0352	3.0313	3.3450	3.5098	4.0823	4.0823	3.7137	4.0588	3.8078	3.7372	4.0980	3.2745	[3.03 - 4.11]
NTENA GA E	Dimen	W_4	4.0902	3.4078	3.5176	3.6431	3.1725	3.3843	4.1529	3.1882	3.5490	3.6745	3.2588	3.2901	3.6431	3.8313	3.1882	3.329	3.2117	3.1960	3.6117	3.5098	[3.17 - 4.15]
NALES DE AI		W_3	4.2706	3.0706	3.6039	3.6431	3.8941	3.0156	3.1882	3.1490	3.1176	3.6117	3.9882	3.5490	4.5843	3.9568	3.1490	3.1411	3.7843	3.9725	3.4313	3.5725	[3.01 - 4.58]
NSIONES FII		W_2	3.9804	3.7686	3.2117	3.1882	3.2431	3.9176	3.1255	4.1215	3.9254	3.0078	3.0705	3.6666	3.5333	4.4745	4.1215	3.8313	3.1882	3.6431	3.2039	3.0000	[3.00 - 4.47]
DIME		W_1	3.7137	3.1961	3.6509	3.2745	3.2274	3.1568	4.1686	3.6745	3.0156	3.0862	4.7960	3.0784	3.7294	3.1254	3.6745	3.3921	3.1725	3.1803	4.1137	3.7921	[3.01 - 4.79]
			Int_1	Int_2	Int_3	Int_4	Int_5	Int_6	Int_7	Int_8	Int_9	Int_{10}	Int_{11}	Int_{12}	Int_{13}	Int_{14}	Int_{15}	Int_{16}	Int_{17}	Int_{18}	Int_{19}	Int_{20}	Variación

Tabla 6.12Dimensiones óptimas GA con prioridad Ganancia

ANEXO 2: MATRIZ DE CONSISTENCIA

Tabla 6.13

Matriz de consistencia.

		Matriz de consistencia		
PROBLEMAS	OBJETIVOS	JUSTIFICACIÓN	VARIABLES	EL MÉTODO
Problema General	Objetivo General	Actualmente en el Perú vivimos una decadencia	Variables e Indicadores	Es posible distinguir etapas que se realizaran
El diseño de antenas patch en serie es un	Realizar un análisis comparativo de la	tecnológica preocupante. Esto provoca una falta	Geometría y parámetros	en diferentes paquetes de software
proceso complejo que involucra múltiples	eficiencia de los tres algoritmos de	de diversidad en el sector productivo y que se ve	de la antena.	comercial. Después de elegir el algoritmo y
parámetros y variables, lo que dificulta su	optimización bio-inspirados para el diseño	altamente vulnerable a posibles crisis	Variables e Indicadores	priorizar los parámetros de antena deseados
optimización utilizando métodos	de antenas patch en serie, adaptándolos para	económicas. Es de urgencia que se aplique	independientes	dentro del modulo de software que se
convencionales. Por lo tanto, es necesario	la optimización de una antena serial de 8	múltiples esfuerzos desde todos los sectores	Parámetros especiales y	implementara, es necesario utilizar un
evaluar el desempeño de diferentes	parches y determinar el algoritmo más	llamados a proponer soluciones, es la academia	circuitales de la antena.	simulador electromagnético. Dicho software
algoritmos de optimización bioinspirados	apropiado para su optimización.	o el sector universitario. En el caso de nuestra	Variables e Indicadores	permite el calculo de las ecuaciones de
para determinar el más adecuado para la	* Establecer una función objetivo que	universidad, se puede contribuir en las temáticas	dependientes	Maxwell de diseños CAD de antenas. El
optimización de antenas patch en serie y	incluya siete parámetros geométricos de la	relacionadas a nuestras carreras profesionales.	Algoritmo BA	modulo a implementar se comunica con el
mejorar su eficiencia y rendimiento.	antena y dos casos en la función de aptitud:	Una de estas áreas de actualidad, son las	Algoritmo GA	simulador electromagnético, dándole la
* ¿Que función objetivo es la más	uno para el ancho de banda y otro para la	comunicaciones móviles de quinta generación.	Algoritmo PSO	descripción de la antena inicial. Al final de
adecuada para optimización del ancho de	ganancia	Al ser la quinta generación de dicha tecnología,	Variables e Indicadores	la simulación electromagnética, el software
banda y la ganancia de la antena y que	* Implementar y adaptar los algoritmos de	se le considera ya en un estado de completa	intervinientes	comercial se comunica devuelta con el
incluya los siete parámetros geométricos	optimización bio-inspirados murciélago	maduración. Es así que, muchas etapas	Geometría de antena patch	modulo implementado, entregando los
de la antena?	(BA), optimización del enjambre de	propuestas en los estándares de dichos sistemas	serial.	resultados de simulación de la antena para
* ¿Cómo se pueden adaptar los	partículas (PSO) y algoritmo genético (GA)	ya presentan un nivel de complejidad bastante		una iteración dada. El modulo a
algoritmos bio-inspirados para la	para la optimización de una antena serial de	elevado. Lo que implica la necesidad de utilizar		implementar evaluara si los resultados
optimización de una antena serial de 8	8 parches.	recursos tecnológicos y herramientas muy		coinciden con los requerimientos deseados.
parches?	* Analizar la eficacia de los tres algoritmos	especializadas, costosa y escasas en nuestro país.		De ser así, se guardan las variables de la
* ¿Cuál es el impacto de la priorización	de optimización en términos de la	Una de las áreas de estos sistemas es el		antena y los valores de la función objetivo.
de los parámetros de la función objetivo	priorización en los parámetros para	desarrollo de antenas para cumplir con los		De no ser el caso, se repite el proceso para
en los resultados de la optimización de la	optimizar los parámetros de la antena serial	requisitos de 5G. El desarrollo implica etapas de		una nueva iteración. Se repite el proceso con
antena?	de 8 parches.	diseño, fabricación, optimización, validación y		todos los módulos implementados para cada
* ¿Cómo se pueden analizar y comparar	* Comparar los resultados obtenidos de los	test de los prototipos. En la presente tesis nos		algoritmo (BA, GA y PSO). Se guardan los
los resultados de los tres algoritmos de	algoritmos de optimización y determinar el	enfocaremos en la etapa de optimización de los		resultados de cada algoritmo, para un
optimización y determinar cuál es el más	algoritmo más apropiado para la	prototipos diseñados. La optimización es un		mismo caso a optimizar. Se realiza la
apropiado para la optimización de la	optimización de la antena serial de 8	proceso iterativo que implica la utilización de		evaluación total y la evaluación de cada
antena serial de 8 parches en términos de	parches en términos de su capacidad para	recursos computacionales, que por lo general		parámetro de antena individualmente.
su eficacia y eficiencia?	cumplir con la función objetivo.	son limitados en nuestro país.		

ANEXO 3: GLOSARIO DE TÉRMINOS

- Heurístico: utilizan un enfoque de prueba y error para generar nuevas soluciones sin ninguna estrategia (Yang, 2017).
- Metaheurística: son heurísticas de nivel superior con el uso de la memoria. Utiliza el historial de soluciones u otras formas de estrategia de aprendizaje para encontrar mejores soluciones (Yang, 2017).
- Estocástico: son generaciones de números aleatorios y procesos aleatorios, por lo tanto, no se pueden encontrar soluciones idénticas; incluso partiendo de los mismos puntos iniciales, las soluciones finales pueden ser lo suficientemente cerca permitiendo que el algoritmo escape de cualquier modo local (Yang, 2017).