
UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR

FACULTAD DE INGENIERÍA Y GESTIÓN ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA Y ELÉCTRICA

"IMPLEMENTACION DE UN PLAN DE MANTENIMIENTO PARA EL AREA DE CORTE DE MATERIA PRIMA DE LA EMPRESA METAL MECANICA EL DETALLE S.R.L. – VES – LIMA"

TRABAJO DE SUFICIENCIA PROFESIONAL

Para optar el Título Profesional de

INGENIERO MECÁNICO ELECTRICISTA

PRESENTADO POR EL BACHILLER

ROJAS MELO, CARLOS ENRIQUE

Villa El Salvador 2018

DEDICATORIA:

El presente trabajo lo dedico en primer lugar a Dios por ser mi guía en los momentos difíciles, a mis padres Dalia y José por el apoyo incondicional que siempre me brindan, a mis hermanos por la comprensión y ayuda, en especial a mi esposa Diana por estar a mi lado en todo momento y a mi querido hijo Sebastián.

AGRADECIMIENTO:

A mis padres por estar a mi lado en todos los momentos de mi vida, a mis hermanos por sus consejos, a mi esposa por ser mi mejor ayuda motivándome para seguir adelante y a mis profesores de la UNTELS por los conocimientos que me brindaron a lo largo de mi carrera.

INDICE

INTRODUCCION CAPITULO I: PLANTEAMIENTO DEL PROBLEMA	8
	40
1.1 Descripción de la realidad problemática	
1.2 Justificación del problema	
1.3 Delimitación del proyecto	
1.3.1 Teórica	
1.3.2 Espacial	
1.3.3 Temporal	
1.4 Formulación del problema	
1.4.1 Problema general	13
1.4.2 Problemas específicos	13
1.5 Objetivos	14
1.5.1 Objetivo general	14
1.5.2 Objetivos específicos	14
CAPITULO II: MARCO TEORICO	
2.1 Antecedentes	15
2.2 Bases teóricas	18
2.3 Definición de términos básicos	55
CAPITULO III: DESARROLLO DEL TRABAJO DE SUFICIENCIA PROFES	SIONAL
3.1 Modelo de solución propuesto	57
3.2 Resultados de la propuesta de solución del trabajo de suficiencia	83
CONCLUSIONES	97
RECOMENDACIONES	99
BIBLIOGRAFIA	100
FUENTES BIBLIOGRAFICAS	101
ANEXOS	102

LISTADO DE FIGURAS

Figura 1: Evolución del mantenimiento2	21
Figura 2: Principios básicos del mantenimiento	22
Figura 3: Curva de determinación P-F	33
Figura 4: Los 8 pilares del TPM	37
Figura 5: Operatividad de una determinada máquina	38
Figura 6: Ejemplo de diagrama de Ishikawa	1 0
Figura 7: Vista frontal de empresa metal mecánica El Detalle S.R.L	1 6
Figura 8: Principales productos de empresa metal mecánica El Detalle S.R.L	1 7
Figura 9: Proceso de producción de planta metal mecánica El Detalle S.R.L	52
Figura 10: Puntos críticos en el proceso de producción de la empresa metal mecánica E	H
Detalle S.R.L5	3
Figura 11: Proceso de producción del área de corte de materia prima de la empresa met	al
mecánica El Detalle S.R.L	58
Figura 12: Etapas del AMEF aplicado al proceso del área de corte de materia prima de l	а
empresa metal mecánica El Detalle S.R.L	59
Figura 13: Porcentaje total de los costos de mantenimiento correctivo de las áreas de	
producción6	;2
Figura 14: Número total de paradas no programadas de las áreas de producción del año)
2017	34
Figura 15: Porcentajes total del número de paradas no programadas de las áreas de	
producción del año 2017	35
Figura 16: Resultado de la encuesta realizada a personal de mantenimiento	36

Figura 17	: Comparación del promedio de número de paradas de las maquinas del área
	de corte de materia prima de los 4 primeros meses del año 2017 8
Figura 18	: Comparación del porcentaje de disponibilidad de los equipos del área de corte
	de materia prima antes y después del plan de mantenimiento 9
Figura 19	Comparación de los costos de mantenimiento correctivo en el área de corte
	de materia prima de los primeros meses de los años 2017 y 20189

LISTADO DE TABLAS

Tabla 1: Escala del NPR y situación de riesgo de la técnica de mantenimiento AMEF44
Tabla 2: Criterios de análisis del NPR de la técnica de mantenimiento AMEF45
Tabla 3: Costo instalado de equipos del área de corte de materia prima60
Tabla 4: Costos de mantenimiento correctivo de año 201761
Tabla 5: Total de paradas no programas de las áreas de producción del año 201763
Tabla 6: Parámetros de disponibilidad de equipos del área de corte de materia prima90
Tabla 7: Resultado de los parámetros de disponibilidad luego de la implementación del
plan de mantenimiento94

INTRODUCCION

Por la alta competencia de las industrias, la dirección de estas empresas está orientada a ofrecer productos de calidad y satisfacer las necesidades de sus clientes. En ese contexto es de vital importancia su plan de mantenimiento (PM) que tiene como tarea principal el logro de metas y objetivos de las industrias, ayuda a reducir los costos, a minimizar las paradas de planta, para entregar los productos en las fechas establecidas por sus clientes. El plan de mantenimiento de los equipos de las empresas tiene una función importante en los procesos ya que permite incrementar la disponibilidad, reduce el costo de mantenimiento de las mismas, al respecto podemos mencionar que al realizar un (PM) los métodos más usadas son los cuantitativos porque en la realización del (PM) es fundamental el uso de la estadística ya que se inicia de los datos históricos de las fallas en los equipos de las empresas.

En el presente trabajo de suficiencia profesional titulado "IMPLEMETACION DE UN PLAN DE MANTENIMIENTO PARA EL AREA DE CORTE DE MATERIA PRIMA DE LA EMPRESA METALMECANICA EL DETALLE S.R.L.-VES-LIMA" se lograra una implementación de un PM que se ajusta a las necesidades de esta empresa utilizando el análisis de modos y efectos de fallas (AMEF) que es una técnica de mantenimiento que se utilizó como base para el desarrollo del (PM). Este trabajo de suficiencia profesional consta de 3 capítulos con una parte final de conclusiones y recomendaciones.

En el capítulo I titulado planteamiento de problema; aquí se describe en entorno en el cual se desarrolló el trabajo y se describe el planteamiento del problema, las delimitaciones del trabajo, los objetivos que se desean alcanzar y se precisa la justificación del trabajo de suficiencia profesional.

En el capítulo II titulado marco teórico; se describe los aspectos teóricos relevantes que fundamentan el desarrollo del trabajo a realizar, se desarrolla la evolución del mantenimiento, los conceptos del mantenimiento en la actualidad, tipos de mantenimiento, se describe la técnica de mantenimiento utilizada para el desarrollo del trabajo que es el análisis de modos y falla (AMEF),se fundamenta las disponibilidad, mantenibilidad y confiabilidad para una determinada máquina, terminando el capítulo se desarrolla la decisión de los conceptos utilizados en el trabajo de suficiencia profesional.

En el capítulo III titulado desarrollo del trabajo de suficiencia profesional; aquí se desarrolla la propuesta de plan de mantenimiento utilizando la técnica de mantenimiento de análisis de modos y fallas (AMEF), se analiza los parámetros de disponibilidad de las maquinas involucradas en el trabajo de suficiencia profesional.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA

1.1 Descripción de la realidad problemática

En la actualidad la planta metalmecánica El Detalle S.R.L. tiene 5 áreas de producción las cuales son: corte de materia prima, prensado, laminado, soldadura y acabados. Esta empresa produce ferretería eléctrica proyectos para electromecánicos de distribución y transmisión eléctrica (pernos, tuercas, varillas de anclaje, pernos de anclaje, pastorales, etc.), los mismos que forman parte del crecimiento de producción diaria. Considerando esta exigencia en la producción se observa un incremento de las horas de trabajo en las maquinas del área de corte de materia prima, las mismas que generan diversas paradas por fallos o acondicionamiento de los equipos, por ello resulta necesario implementar un plan de mantenimiento, que permita asegurar la disponibilidad de los equipos durante las horas de trabajo con el propósito de reducir paradas de máquinas imprevistas.

Esta empresa no cuenta con un plan de mantenimiento establecido por la cual no cumple con los plazos en las actividades de mantenimiento para garantizar la disponibilidad de las máquinas, la mayor parte de los trabajos de mantenimiento son de tipo correctivo y muchos de estos realizados por empresas externas.

1.1.1 Know how de la empresa y su relación con el AMEF

El know how de la empresa metal mecánica El Detalle S.R.L. se caracteriza básicamente por la estructura de sus procesos de producción, es decir los ciclos que pasa la materia prima hasta terminar en su producto final para entregar a sus clientes, estos ciclos se caracterizan por el orden y ubicación de las máquinas de las áreas de trabajo que mejoran la rapidez de los procesos, en tal sentido una de las áreas de producción más importantes es la de corte de materia prima. Desde el año 2017 se observó deficiencias en esta área por las paradas que se suscitaron en este año 2017, ya que las paradas imprevistas de una maquina son dos razones fundamentalmente por mala operación o por deficiencias en el mantenimiento de estas máquinas, por el historial de mantenimiento correctivo se concluye que el problema de las paradas imprevistas es por deficiencias de mantenimiento, en esta área está conformada por tres máquinas y por el pequeño número de máquinas el método que mejor se adapta en estas circunstancias es el análisis de modos y efectos de falla (AMEF) en las máquinas de esta área para mejorar las actividades de mantenimiento y reducir las paradas de las máquinas.

1.2 Justificación del problema

La implementación de un plan de mantenimiento en el área de corte de materia prima tiene como propósito realizar un análisis de modos y efectos de fallas (AMEF) de las máquinas y en base a estos resultados instaurar actividades y tareas de mantenimiento en esta área para contribuir con mejorar los parámetros de disponibilidad de las maquinas durante las horas de producción.

Con esta propuesta de plan de mantenimiento se busca reducir las paradas de maquina en el área de corte de materia prima y los costos, salvaguardando la integridad de las máquinas del área en mención.

1.3 Delimitación del proyecto

1.3.1Teórica

En el presente trabajo desde el punto de vista teórico abarca la selección y utilización de una técnica de mantenimiento (AMEF), en base al historial de paradas de las máquinas involucradas en el proceso de corte de materia prima de la empresa metalmecánica El Detalle S.R.L. y lo establecido en diferentes investigaciones del mantenimiento en las industrias en la actualidad.

1.3.2 Espacial

El presente trabajo se realizara en el área de corte de materia prima de la empresa metal mecánica El Detalle S.R.L. ubicada en la av. Pachacutec; manzana: G1; lote: 5 en el distrito de Villa el Salvador, provincia Lima, departamento Lima.

1.3.3 Temporal

Para el desarrollo de presente trabajo comprendió desde el 02 de marzo al 18 de junio del 2018.

1.4 Formulación del problema

1.4.1 Problema general

¿Cómo reducir las paradas imprevistas de las máquinas del área de corte de materia prima de la empresa metal mecánica El Detalle S.R.L.?

1.4.2 Problemas específicos

- ¿Cómo realizar el análisis de las máquinas que operan en el área de corte de materia prima de la empresa metal mecánica El Detalle S.R.L.?
- ¿Cómo realizar los cálculos de los parámetros de disponibilidad de las máquinas que operan en el área de corte de materia prima de la empresa metal mecánica El Detalle S.R.L.?

1.5 Objetivos

1.5.1 Objetivo general

Implementar un plan de mantenimiento en el área de corte de materia prima que permita reducir las paradas de maquina imprevistas de la empresa electromecánica El Detalle S.R.L.

1.5.2 Objetivos específicos

- Elaborar un análisis de modos y efectos de fallas (AMEF) de las máquinas que operan en el área de corte de materia prima.
- Calcular y analizar los parámetros de disponibilidad de las máquinas que operan en el área de corte de materia prima.

CAPITULO II

MARCO TEORICO

2.1 Antecedentes

En la actualidad las empresas industriales tienen claro que el tener un plan de mantenimiento óptimo permite que sus productos sean de calidad. Con el plan de mantenimiento eficaz se logra reducir las fallas de las maquinas teniendo en cuenta las técnica aplicadas para desarrollar dicho plan de mantenimiento.

En este aspecto son muchos los trabajos que vienen siendo desarrollados y estudiados por diferentes autores como son:

Palomares, E (2015). Implementación del mantenimiento centrado en la confiabilidad (RCM) al sistema de izaje mineral, de la compañía minera "Milpo" unidad el porvenir, sustentada en la Universidad Nacional de Ingeniería para optar el grado académico de maestro en gerencia e ingeniería de mantenimiento, nos manifiesta que: Las

máquinas que tienen fallas de más de 3 horas de para, perjudicando la producción, en estos casos se debe realizar un análisis de causa raíz para determinar las fallas de las mismas e incluirlo en un mantenimiento centrado en la confiabilidad. También nos refiere que para realizar este tipo de mantenimiento (RCM) requiere de un elevado costo por lo cual solo debe estar enfocado en los equipos de mayor criticidad.

En este tipo de plan de mantenimiento es fundamental tener buena comunicación y comprometer al personal directamente involucrado en el manejo y mantenimiento de las máquinas, como son los operadores de máquina y los técnicos de mantenimiento, en este contexto se debe tener una estructura mínima de operación con un supervisor de producción y su operador, un supervisor de mantenimiento y técnicos de mantenimiento.

Da Costa, M. (2010). Aplicación del mantenimiento centrado en la confiabilidad a motores de gas de dos tiempos en pozos de alta producción, sustentada en la Pontificia Universidad Católica del Perú para obtener el título de profesional de Ingeniero Mecánico, nos manifiesta que: Al determinar los tiempos promedios entre fallas de las máquinas de una determinada línea de producción nos permite saber la frecuencia optima de intervención en cada máquina y enfatiza que esta actividad es muy importante ya que se verá reflejado directamente en la hoja de decisiones y lista de tareas de mantenimiento a realizar. También nos manifiesta la necesidad de adquirir los repuestos y materiales necesarios para el mantenimiento de las máquinas de acuerdo al estado de criticidad de los mismos.

Becerra, G. y Paulino, J. (2012). El análisis de confiabilidad como herramienta para optimizar la gestión de mantenimiento preventivo de los equipos de línea de flotación en un centro minero, sustentada en la Universidad Nacional de Ingeniería para optar el grado académico de maestro en ingeniería con mención en gerencia e ingeniería de mantenimiento, nos manifiesta que: Un punto muy importante en el plan de mantenimiento en el análisis de modos y fallas (AMEF) ya que es una herramienta muy útil la cual trabaja sistemáticamente para reconocer las fallas de una maquina o equipo antes de que estas ocurran, determinan los efectos que estos ocasionan e identifican los pasos a seguir para atenuar estas fallas, es decir es una metodología con visión de lograr la funcionabilidad y confiabilidad de las máquinas y equipos.

Figueroa, O (2015). Definición de un plan de mantenimiento óptimo para equipos críticos de una planta de laminación, sustentada en la Universidad de Chile para optar el grado académico de ingeniero civil mecánico, nos manifiesta que: La utilización de un análisis de modos y efectos de falla (AMEF), permite seleccionar adecuadamente las inspecciones de mantenimiento y aplicarlas de acuerdo a las frecuencias óptimas calculadas, por tal motivo es una excelente alternativa ya que requiere de bajo costo de aplicación relacionado al costo de hora hombre de inspecciones. También refiere que aplicar un plan de mantenimiento concluye con un ahorro significado respecto a los costos de mantenimiento.

Cárdenas, M. (2011). Diseño de un plan basado en RCM, para los equipos y vehículos de Dinacol S.A., sustentada en la Universidad Tecnológica de Bolívar para optar el grado académico de ingeniero mecánico, nos manifiesta que: El análisis de modo y efectos de fallas (AMEF), es un conjunto de actividades que se realiza a los sistemas de cada máquina para identificar sus funciones principales, teniendo en cuenta que perdida de estas funciones genera costos de mantenimiento considerables. La elaboración de un plan de mantenimiento utilizando la herramienta (AMEF) permite conocer todas aquellas fallas que en algún momento pudieran aparecer, y establecer las tareas a realizar para atenuar estas fallas. También resalta que estas tareas pueden tener variaciones dependiendo de la exigencia que requieran la producción.

2.2 Bases teóricas

2.2.1 Evolución del mantenimiento

Desde las primeras fabricas donde se fabricaba algún producto era necesario reparar las máquinas para que estas continúen con los procesos, es como nació el mantenimiento de alguna u otra forma estaba ligado a la producción ya que obligaba a hacer modificaciones en los tiempos de los procesos para las reparaciones. Es así que en el periodo del siglo XX el mantenimiento tuvo tres grandes etapas con características bien marcadas entre estas etapas, a continuación mencionares las siguientes etapas del mantenimiento:

2.2.1.1 Primera generación:

Según Moubray, J. (2004). En esta primera generación el mantenimiento fue básicamente mantenimientos correctivos, ya que en esta época al término de la primera guerra mundial e inicios de la segunda guerra mundial que fue donde se inició esta primera etapa, las paradas de maquina no era tan perjudicial para el proceso porque se tenían grandes máquinas con sistemas simples para el proceso y las actividades de mantenimiento no implicaba grandes conocimiento que hoy en día se requiere para realizar los diferentes tipos de mantenimiento. No se tenía un mantenimiento complejo solo de limpieza externas de las máquinas por lo simple de sus sistemas mecánicos de las mismas y solo se repara cuando estas fallaban no se tenía reparo en el tiempo de reparación para las actividades de mantenimiento.

2.2.1.2 Segunda generación:

Según Moubray, J. (2004). Aquí en esta etapa se empezaron a mecanizar los procesos de fabricación ya que en esta época del final de la segunda guerra mundial donde se inició esta etapa, no se tenía mucha mano de obra por las consecuencias de la segunda guerra mundial, aquí se empezaron a tomar en cuenta las formas de prevenir los fallos de máquinas ya que se empezó a dar importancia de los tiempos de para de las maquinas es en este contexto que se dio la iniciativa de establecer el mantenimiento preventivo que consistían en verificaciones de funcionamiento cada cierto tiempo y limpieza externas de las máquinas,

luego se empezó con los sistemas de control y plan de mantenimiento para controlar los costos de mantenimiento que estos implicaban ya en los años 70 se empezó a utilizar la herramientas informáticas para el buen funcionamiento de los planes de mantenimiento se crearon nuevas técnica informáticas como software, ya en los años 80 se empezó a utilizar con mayor importancia los términos de disponibilidad, confiabilidad y costos, que hasta hoy en día son muy utilizados e importantes para la gestión de mantenimiento.

2.2.1.3 Tercera generación:

Según Moubray, J. (2004). Con la creciente automatización de los procesos de producción se evidencia el gran golpe en las industrias por así decirlo que produce una parada en los procesos por fallas de máquinas, aquí es donde se realizan mayores estudios en mejora de mantenimiento y se originan las filosofías de mantenimiento que son usadas en diferentes empresas industriales tales como el mantenimiento predictivo (MP).

El mantenimiento productivo total (TPM), el mantenimiento basa en confiabilidad (RCM), el mantenimiento autónomo (MA), también se toma gran importancia la seguridad de los trabajadores implementando análisis de riesgo ya que al no haber fallas en las maquinas no representa riesgo a operador.se origina los análisis de efectos y modos de falla para determinar a causa raíz de una determinada avería y poder reconocer las causas que lo provocan.

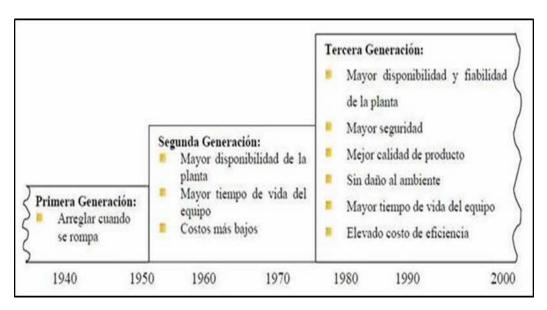


Figura 1: Evolución del mantenimiento. (Fuente: Moubray, J. 2004. Mantenimiento centrado en confiabilidad, RCM II,)

2.2.2 Concepto de mantenimiento

En el contexto de este trabajo el cual se implementara un plan de mantenimiento es indispensable mencionar los conceptos del mantenimiento y como fue desarrollándose el mantenimiento desde sus inicios hasta la actualidad para tener una idea clara de los avances que fueron suscitándose a lo largo de la evolución del mantenimiento. Es así que tenemos los siguientes conceptos del mantenimiento:

Según Torres, D. (2005). El mantenimiento son acciones o actividades que garanticen la conservación de las maquinas o equipos con un excelente nivel de disponibilidad y confiabilidad con el mínimo costo posible. Entonces la finalidad del mantenimiento es alcanzar el máximo nivel de operatividad de las máquinas y equipos al menor costo posible, este concepto sintetiza todo lo que se busca con el mantenimiento a un determinado equipo maquina sistema o

estructura ya que el fin de todo mantenimiento es lograr tener un activo que logre tener excelentes índices de confiabilidad y disponibilidad con un mínimo costo.

El mantenimiento en otras palabras es el conjunto de actividades en la cual se busca que un activo realice sus funciones con un mínimo costo como el dueño del activo lo desea, por tal motivo son los constantes avances del mantenimiento desde su aparición.

Entonces la ingeniería de mantenimiento busca analizar los efectos de las fallas que pueden originar las paradas imprevistas y así eliminar las causas de las fallas de las máquinas de una determinada producción.

Según Becerra, G. y Paulino, J. (2012). Se puede decir que mantenimiento por sus conceptos considerado como una ciencia por poseer conocimientos que se obtiene de la practica en la industria, por el estudio de varios autores acerca de tema, por la leyes en todo el mundo que mencionan el mantenimiento.

Temas Técnicos	Recursos Humanos	Campo Económico
•Servicios •Productos •Calidad de los productos	•Función de relaciones internas del personal	•Estructura de mantenimiento
•Métodos de trabajos de mantenimiento	•Función de relaciones externas	•Economía en la gerencia de mantenimiento
•Manejo de materiales óptimo •Control de todas las actividades de mantenimiento.	•Función de la organización del mantenimiento	•Economía frente a la producción

Figura 2: Principios básicos del mantenimiento. (Fuente: Mora, A. (2005) Mantenimiento estratégico para empresas industriales o de servicios.)

2.2.3 Tipos de mantenimiento

El mantenimiento por su evolución desde sus inicios, fueron surgiendo tipos de mantenimiento los cuales se fueron desarrollando y perfeccionando para mejora de las actividades de mantenimiento en todo nivel, es decir estos tipos de mantenimiento son utilizados en todo el mundo y en diferentes industrias dependiendo de las necesidades de cada sistema industrial.se mencionara los más estudiados y utilizados los cuales son los siguientes:

2.2.3.1 Mantenimiento preventivo:

Según Duffuaa. S. (2000).Este tipo de mantenimiento es esencial para el desarrollo de las nuevas técnicas y herramientas del mantenimiento que hoy en día se conoce, son actividades de inspecciones periódicas y programadas de un equipo, maquina o sistema el cual tener los recursos necesarios y disponibles para realizar estas actividades, estas actividades son realizadas antes que se produzca una falla. Se organiza un plan que permita detectar y corregir fallas antes de que estas ocurran los planes de mantenimiento es el resultado de plasmar estas actividades en periodos según las máquinas que serán objeto del mantenimiento preventivo.

- Se evita la carga de horas al personal de Mantenimiento.
- Se disminuye de paradas imprevistas.
- Ya no se realiza grandes reparaciones a las máquinas.
- Mayor disponibilidad de equipos.
- Se puede distinguir los equipos con mayor costo de mantenimiento.

2.2.3.2 Mantenimiento predictivo:

Según González, F. (2009). En este tipo de mantenimiento las actividades son programadas que consisten en estudios de los parámetros que indicarían las posibles falas de un determinado sistema, como podemos mencionar la temperatura, vibraciones, ruido, estado de aceite, etc. Es decir con este tipo de mantenimiento se puede predecir la ocurrencia de una falla, estas actividades se realizan mediante pruebas complejas utilizando equipos tecnológicos que fijan un historial de estado de la máquina, ya que las fallas se presentan de manera sistemática es decir no son de un momento a otro, estas presentan síntomas y es a donde apunta este tipo de mantenimiento en detecta as fallas mediante la intervención en detectar los síntomas de las futuras fallas.

Ventajas de mantenimiento predictivo:

- Maximiza la confiabilidad y disponibilidad del equipo.
- Se obtiene la máxima vida útil de los componentes de equipo.
- Inspecciones con sólo los sentidos humanos, de bajo costo.
- Permite una detención antes que un daño ocurra en el equipo.
- La causa de la falla puede ser analizada.
- La mano de obra se puede organizar previamente.
- Los repuestos se pueden ensamblar previamente.
- Se conoce con precisión cuando y que debe ser cambiado en la máquina.

2.2.3.3 Técnicas utilizadas en el mantenimiento predictivo.

2.2.3.3.1 Termografía.

Es una de las técnicas del mantenimiento predictivo de las más utilizadas en la actualidad, usadas en los equipos y sistemas de la industria.

Utilizan instrumentos que emiten energía infrarroja, para realizar la medición de los parámetros requeridos, es decir, la temperatura en los motores eléctricos, transformadores, conexiones eléctricas, bombas, ventiladores, compresores, etc. Los métodos másusados son los siguientes:

Termógrafo infrarrojo

Se utiliza para obtener la temperatura de un punto específico de una máquina o de una superficie.

Cámara infrarroja

Según Duffuaa. S. (2000). Puede captar imágenes infrarrojos, y de estos datos se puede obtener como fotos o videos. Se utiliza para obtener la temperatura de toda el área enfocada, el usuario puede ver la emisión térmica por el visor de la cámara. No es necesario realizar un contacto con el equipo a medir, es decir se mide a distancia, se puede inspeccionar rápidamente, es de fácil uso, la desventaja de esta medición seria el costo que requiere el cual es alto.

2.2.3.3.2 Tribología.

Referido a la ciencia que estudia el desgaste, fricción y la lubricación de los descansos del eje de los diferentes diseños estructural de una máquina. En este contexto se presenta los métodos utilizados para los análisis de los lubricantes:

Análisis de lubricantes

Es la técnica de análisis para determinar la condición del lubricante usado en un equipo mecánico o eléctrico. Para esta técnica se debe tener las siguientes consideraciones: la viscosidad del lubricante, la contaminación que pueda tener, la dilución de combustible, contenido de sólidos, oxidación, contenido de partículas.

Análisis de espectrografía

Permite medir rápidamente la cantidad de elementos presentes en el aceite lubricante. Estos elementos generalmente se clasifican como metales, contaminantes o aditivos. El resultado nos da que algunos elementos pueden estar por encima de los valores de clasificación estándar.

Análisis de ferrografia

Parecido al análisis de espectrografía solo que este método es de separación de partículas usando un campo magnético, se separa y analiza partículas menores a 10 micras.

Análisis de partículas

Según González, F. (2009). Estudia solo las partículas en el lubricante. Este análisis nos arroja información directa acerca de la condición de la máquina, ya que estudia la forma, tamaño, composición y cantidad de la partícula como tal.

2.2.3.3.3 Ultrasonido.

La principal aplicación del ultrasonido es detección de falla en rodamientos, detección de fugas y medición de espesores. El ultrasonido monitorean altas frecuencias (ultrasonido), 20 a 100 kHz. Ideal para detectar fugas en válvulas, trampas de vapor, intercambiadores, etc. Es de rápida respuesta, no requiere procesar a información y bajo costo de instrumentación.

2.2.3.3.4 Análisis vibracional

Se realiza el análisis de las vibraciones que pudieran provenir de la máquina de origen interno, es decir generadas por falla de algún componente del sistema de la máquina, generadas por cambios en las condiciones de funcionamiento adaptaciones o modificaciones. Producto del análisis vibracional se puede detectar fallas como:

Desbalanceo

Se debe que el centro de masas de las diferentes secciones transversales que componen el rotor no se

encuentra sobre el eje de rotación. Genera fuerzas centrifugadas des compensatorias que hacen vibrar la máquina. Posibles causas:

Posibles causas del desbalanceo:

- Depósito de suciedad, sales, producto procesado.
- Perdida de material por erosión, corrosión, abrasión.
- Desprendimiento de parte de alabes o depósitos.
- Objetos extraños en el rotor.

Desalineamiento

Este fenómeno se produce cuando los centros de ejes de dos máquinas acopladas no coinciden, esto debido a problemas de montaje, por esfuerzos producidos por sobrecarga de trabajo de las máquinas. Esto produce dos fuerzas, la axial y la radial, cada vez que la amplitud de la vibración axial sea superior a la mitad de la lectura radial más elevada, horizontal o vertical, se deberá sospechar de un desalineamiento o eje deformado.

Las que generan vibraciones radiales y axiales. Existen tres tipos de des alineamiento en os acoplamientos:

- Angular: Se forma un ángulo entre las líneas de los ejes.
- Paralelo: Las líneas centrales de los ejes se encuentran desplazadas en forma paralela.
- Combinado: Desalineamiento angular y paralela.

Soltura mecánica

La vibración característica de la Soltura mecánica, no se produce, a menos que intervenga otra fuerza excitadora, como un desequilibrio o desalineamiento.

Rodamientos

Las fallas de rodamientos en estado incipiente son virtualmente indetectables por cambios en la vibración global, debido a su pequeño nivel respecto a otras vibraciones que la ocultan. De aquí que sea necesario un Análisis Espectral. Las frecuencias generadas por rodamientos defectuosos son los siguientes:

-Frecuencias características: son las frecuencias generadas por el mismo elemento rodante, se determinan suponiendo que los elementos sólo ruedan por las pistas.

-Frecuencias naturales: son las frecuencias de los elementos del rodamiento, carcaza, canastillo, excitadas por los impactos entre los elementos rodantes (bolas, cilindros, etc.) y las pistas del rodamiento, se caracterizan por ser erráticas y se producen a altas frecuencias.

2.2.3.3.5 Resonancia

Se produce cuando la frecuencia de las fuerzas de excitación coincide con alguna frecuencia natural de vibrar de algún elemento. Al aumentar o disminuir la velocidad de la máquina, las vibraciones disminuirán significativamente (forma fácil de detectar el problema).se debe tener en cuenta las resonancias armónica y sub armónicas para determinar la falla con precisión.

2.2.3.3.6 Distorsiones

La distorsión causa vibraciones de una manera indirecta, sea generando des alineamiento, causando roces internos u otros. Las distorsiones generalmente son generadas por Fuerzas· excesivas de ductos y distorsión de fundaciones, ocasionando a veces que el pie de la carcasa se desprende de la placa base, Si los soportes de una máquina no están en un mismo plano.

2.2.3.3.7 Engranajes

Según Francisco, T. Sanchez, M. Perez, A. (2006). La vibración provocada por los problemas de los engranajes, porque normalmente se produce la vibración a una frecuencia igual a la del engranado. Los problemas más comunes de los engranajes que producen vibraciones a las frecuencias del engranado, incluyen el desgaste excesivo de los engranajes, lubricación defectuosa o material extraño dentro de los dientes del engranaje.

2.2.3.3 Mantenimiento sistemático:

Son actividades que se desarrollan mediante un plan establecido, es decir aquí se planifica las intervenciones mediante un previo estudio estadístico por ejemplo de las horas de trabajo de la máquina los cuales son importantes para determinar estos periodos de intervenciones, y se necesita de conocimientos previos de las máquinas para las intervenciones que se realicen.

2.2.3.4 Mantenimiento correctivo:

Según Moubray, J. (2004). Son actividades las cuales se caracterizan por corregir fallas cuando se presentan es decir este tipo de mantenimiento fue la primera que se utilizó ya que solo procedían a las reparaciones cuando fallaban las máquinas, más adelante ya se fue programando este tipo de actividades cuando se reducía la producción para realizar los correctivos necesarios en las máquinas, por tal motivo decimos que se subdivide en dos tipos de mantenimiento correctivo el inmediato y el programado. En el programado a diferencia del mantenimiento preventivo este mantenimiento correctivo programado ya se sabe de la falla solo se espera el momento para realizar la intervención y el preventivo se realiza las actividades antes que ocurra las fallas.

2.2.3.5 Mantenimiento centrado en la confiabilidad (MCC):

El Mantenimiento Centrado en la Confiabilidad (RCM) es un método para determinar a confiabilidad de un equipo. Se centra en la optimización de los programas de mantenimiento preventivo y predictivo para aumentar la eficiencia del equipo (tiempo de funcionamiento, desempeño y calidad) mientras que minimiza los costos de mantenimiento relacionados. El mantenimiento centrado en la Confiabilidad (RCM, iniciales en inglés de Reliability - Centered Maintenance) es una estrategia para alcanzar la máxima confiabilidad del equipo y una extensión de la vida útil del equipo al más bajo costo. Al realizar esta implementación identifica las funciones de cada equipo en particular.

Según Becerra, G. y Paulino, J. (2012). Los estándares de funcionamiento del equipo son identificados para cada función y las fallas son definidas si el estándar de funcionamiento no es alcanzado. Basado en las consecuencias de las fallas, un programa de mantenimiento caracterizado por técnicas de "monitoreo de la condición" es aplicado para identificar las fallas potenciales (equipo está comenzando a fallar) en forma precisa y rápida para prevenir su deterioro hacia una falla funcional (equipo deja de operar). De esta manera, la vida del equipo es extendida y las consecuencias de las fallas funcionales son reducidas o evitadas. El análisis que acompaña la implementación del RCM asegura que las técnicas de "monitoreo de la condición" son aplicadas correctamente.

Según Moubray, J. (2004)⁶.la base de este tipo de mantenimiento es detectar el inicio de la falla, por el cual se presenta una curva P-F, donde (P) falla detectada y (F) falla funcional. Ya que si es posible determinar si existe una falla o si esta empezaría, en el sistema de un equipo, de aquí que se necesita saber el tiempo que transcurre desde la falla potencial hasta cuando llega a la falla funcional que es la que deteriora el equipo, también de esta curva nos da una perspectiva de la frecuencia de las inspecciones que se deben de realizar, y para detectar a tiempo estas posibles fallas as inspecciones deben ser en intervalos menores de tiempo.

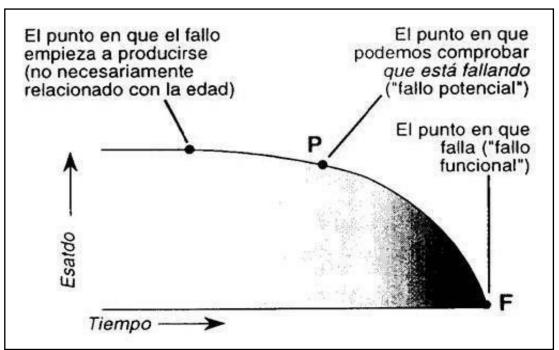


Figura 3: Curva de determinación P-F (Fuente: Moubray, J. (2004). Mantenimiento centrado en confiabilidad, RCM II.)

Las inspecciones periódicas se puede realizar un reacondicionamiento cíclico que permitiría reacondicionar una determinada pieza a su condición inicial, y estas están basadas en sus datos de cada máquina respecto al historial de paradas que presento la maquina en un determinado tiempo. Debemos tomar en cuenta el número de fallas para realizar este reacondicionamiento o simplemente se eliminara esta falla por completo, y realizar un balance de costo que tendrá un reacondicionamiento con un costo al ocurrir la falla.

Entre las principales ventajas del MCC podemos mencionar las siguientes:

- Tiempo de funcionamiento de equipo: Al implementar el MCC se tendrá menos averías por lo que esto significaría un mayor tiempo de funcionamiento de las maquinas por lo tanto el tiempo promedio entre fallas se verán incrementadas.
- Recursos para el mantenimiento: Después de un tiempo de implementación se verán reflejados los ahorros en el proceso de producción y no precisamente por la producción, será son por la eliminación de actividades de mantenimiento producto de la implementación del MCC, esto generaría aumento de los recursos para el área de mantenimiento en mejora de la productividad de la planta.
- Capacidad de equipo: Con el aumento de tiempo de funcionamiento de los equipos, los equipos al detener controlado las fallas potenciales,

estos aumentan también su capacidad de producción en mojaras de un ahorro para la empresa que implemente el MCC.

2.2.3.6 Mantenimiento productivo total (TPM):

El Mantenimiento Productivo Total (TPM) es una filosofía operacional en la que cada persona de la compañía entiende, de alguna forma que su desempeño incide en el desempeño de los activos de la compañía. El TPM es similar a la Administración de Calidad Total. El único cambio es que en vez de que las compañías se centren en sus productos, el centro está en sus activos. Todas las herramientas y técnicas utilizadas para implementar, sostener y mejorar el esfuerzo de la calidad total se utilizan en el TPM.

El mantenimiento productivo total (TPM, de las siglas en ingles Total Productive Maintenance) involucra en la mejora del equipo a todos y cada uno de los individuos de la organización, desde los operarios hasta la alta gerencia. Todos los departamentos deben enfocar la manera cómo influyen en el equipo. El diagrama es el mismo que se utiliza para ilustrar el proceso de Administración de Calidad Total (ACT), con la excepción de que envés de centrarse en el producto, el MPT se concentra en el equipo. De hecho, las compañías que tuvieron éxito con el proceso ACT, por lo general tienen éxito con el proceso TPM. Sin embargo, aquellas compañías que generalmente han tenido problemas con el proceso ACT, también los tendrán con el TPM.

Según Torres, D. (2005). El TPM es una estrategia compuesta por una serie de actividades ordenadas, que una vez implementadas ayudan a mejorar la competitividad de una organización industrial o servicios. Se considera como estrategia, ya que ayuda a crear capacidades competitivas a través de la eliminación rigurosa y sistemática de las deficiencias de los sistemas operativos.

Ventajas de implementación del TPM

El TPM genera grandes ventajas en el aspecto organización y productividad:

Productividad

- Mejora la fiabilidad y disponibilidad de los equipos.
- Reducción de los costos de mantenimiento.
- Mejora la tecnología de la empresa.
- Elimina perdidas que afectan la productividad de las plantas.

Organización

- Mejora el ambiente de trabajo.
- Creación de una cultura de responsabilidad y disciplina.
- Constante aprendizaje.
- Comunicación eficiente de todas a áreas.
- Control de las operaciones.

Principales características del TPM

 Siempre va orientado en mejorar las operaciones, así evitar siempre dar constante mantenimiento de las máquinas.

- Todo el personal está involucrado en el cuidado y conservación de los equipos y recursos de la empresa
- Actividades de mantenimiento a lo largo del ciclo de vida de las máquinas.
- Es una estrategia enfocada a toda la organización y no sola en las máquinas.

Para entender mucho mejor lo que engloba el TPM, en este cuadro se resume sus bases las cuales son catalogadas como los 8 pilares definidos en el siguiente gráfico:

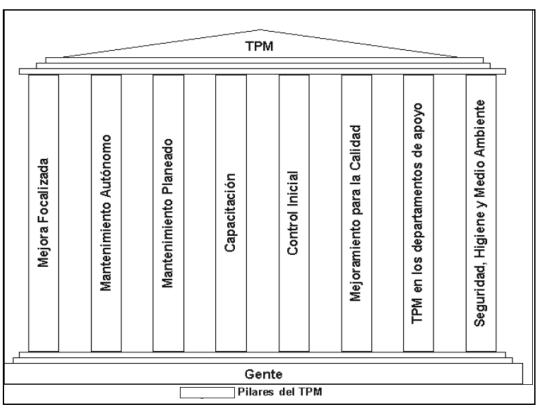


Figura 4: Los 8 pilares del TPM. Fuente: Torres, D. (2005). Mantenimiento su implementación y gestión, (2° edición)

2.2.4 Variables del mantenimiento

Las variables del mantenimiento son indicadores que nos permiten determinar los parámetros de una maquina respecto a tu tiempo de operación, fallas que pudieran ocurrir, la vida útil de las máquinas, con estos indicadores nos permite establecer la disponibilidad de una máquina en cuanto a su operación en un determinado proceso productivo, para tomar las medidas que sean necesarias para mantener sus indicadores o mejorarlos. Las variables nos reflejan una visión de cómo están las máquinas de nuestro proceso productivo (indicadores).

Para realizar el análisis de estas variables se debe establecer un control de paradas que tiene las máquinas, es decir un historial que refleje los tiempos de operación y tiempos de falla.

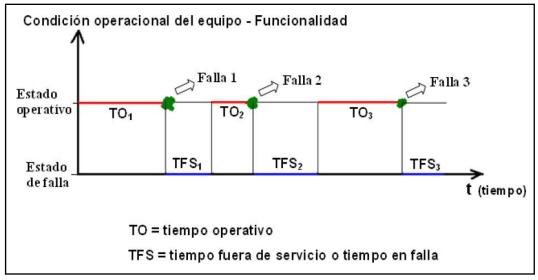


Figura 5: Operatividad de una determinada máquina. (Fuente: Becerra, G. y Paulino, J. (2012). El análisis de confiabilidad como herramienta para optimizar la gestión de mantenimiento preventivo de los equipos de línea de flotación en un centro minero.)

2.2.4.1 Tiempo medio de reparación MTTR:

Es el tiempo promedio que se utiliza para reparar una máquina.

$$MTTR = \frac{\text{(total de horas deparadas)}}{\text{numero de averias}} \tag{1}$$

2.2.4.2 Tiempo promedio entre fallas MTBF:

Es el tiempo promedio de buen funcionamiento, es decir tiempo promedio entre fallas.

$$MTBF = \frac{\text{(total de horas entre fallas)}}{\text{numero de averias}} \tag{2}$$

2.2.4.3 Tasa de fallos:

Es la probabilidad que pudiera existir una falla en un determina sistema, equipo o maquina en un intervalo de tiempo, fallas por unidad de tiempo.

$$Y = \frac{1}{\text{MTBF}} \tag{3}$$

2.2.4.4 Disponibilidad de maquina:

Es la probabilidad que maquina esté en funcionamiento en un tiempo determinado, posibilidad de un buen servicio.

$$D = \frac{\text{MTBF}}{\text{(MTBF + MTTR)}} \chi \ 100 \tag{4}$$

2.2.5 Técnicas del mantenimiento

2.2.5.1 Análisis causa raíz:

Se utiliza para identificar y analizar una falla que de ser corregidos se evitan estos tipos de falla, ya que este tipo de técnica es mucho más minuciosa e implica mucho la experiencia y esfuerzo de los analistas para la obtención de una respuesta positiva y efectiva para la solución del problema detectado. Permite saber las causas fundamentales que conllevan a las fallas recurrentes, este es tipo de análisis deductivo el cual pretende identificar la relación de causalidad que conlleva al fallo de un sistema o equipo. (Torres, 2005).

2.2.5.2 Diagrama de Ishikawa (causa efecto):

En esta técnica analiza y enlaza las causa y sub causas de las fallas que pudieran presentarse en un determina sistema o equipo, utilizado para determinar las causa raíz del problema, la solución de cada problema por desarrollar hasta las sub causas de las fallas.

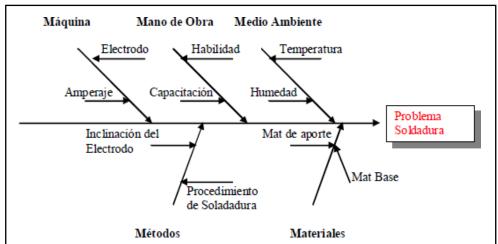


Figura 6: Ejemplo de diagrama de Ishikawa. (Fuente: Torres, D. (2005). Mantenimiento su implementación y gestión, (2° edición).

2.2.5.3 Análisis de modos y efectos de fallas (AMEF)

Este es un técnica o herramienta utilizada en el mantenimiento el cual permite identificar como pueden ocurrir las fallas es decir los modos de falla de una determinada maquina o equipo antes que ocurran estas fallas con lo cual aseguramos las disponibilidad de las máquinas que estuvieran sometidas a este tipo de técnica. La finalidad es identificar completamente la maquina sus sistemas y componentes de la máquina, el diseño los materiales de fabricación, los ensamblajes para realizar un minucioso análisis de las fallas de la máquina.

El AMEF se encarga de identificar los puntos críticos de las maquinas o sistemas con el fin de eliminarlos o establecer medidas de control para reducir estos puntos críticos, el cual sería un procedimiento de anticipación de posibles fallas de máquina. Esta técnica está considerada como una de las más importantes en la prevención de fallas de maquina o sistema, surgió de la ingeniería de confiabilidad y es muy aplicada en el mantenimiento. (González, F. 2009).

2.2.5.3.1 Características del AMEF

- En esta técnica de mantenimiento se puede determinar cuatro características que resaltan en su desarrollo:
- Sistematización, ya que el AMEF sigue una estructura el cual permite que todas las fallas se tengan en cuenta a hacer el análisis.

- Actividad de prevención, es una de sus principales características ya que se anticipa a la presencia de una falla para actuar y evitar los posibles problemas que puedan causar estas fallas.
- Trabajo grupal, esta técnica se desarrolla con un grupo de trabajo que en conjunto analizan los equipos en común conocimiento.
- Jerarquización de tareas, el AMEF jerarquiza los pasos necesarios para anticiparse a los posibles fallo dando paso a las acciones de partes criticas de las maquinas analizadas.

2.2.5.3.2 Tipos de AMEF

Se tiene dos tipos establecidos de AMEF de diseño y de proceso, se deben utilizar con una estructura lógica y siguiendo los pasos establecidos el cual se describirá brevemente.

- AMEF de proceso: En este tipo de AMEF es fundamentalmente dirigido en la fabricación de un producto mediante un proceso, permite garantizar la calidad de su funcionamiento, se analizan las fallas posibles en los sistemas de proceso.
- AMEF de diseño: En este tipo de AMEF utilizada en la ingeniería del producto para estudiar todas las posibles fallas que pudieran tener un producto antes de salir al mercado para su venta final. (Moubray, J. 2004).

La técnica del AMEF se puede lograr objetivos que permite desarrollar un plan de mantenimiento de acuerdo a las necesidades de cada proceso o industria a la que someta, entonces en AMEF está enfocado en:

- Identificar carencias de diseño.
- Proponer opciones en el proceso de diseño.
- Identifica y establece todos los posibles modos de falla y que se comprenda sus efectos.
- Ayuda en identificación de las posibles fallas en los sistemas.
- Orienta para jerarquizar acciones preventivas.
- Orienta para jerarquizar acciones correctivas.

El AMEF surgió gracias al desarrollo del mantenimiento centrado en la confiablidad o RCM lo cual es una de sus herramientas esenciales para desarrollar este tipo de mantenimiento, gracias a su éxito se utiliza en muchas industrias y adquirió el valor de técnica para desarrollar el mantenimiento de un sistema o máquina. Puede ser utilizado cuando no sabemos la causa de la falla o cuando se conoce las fallas y sus causas, en el primero se utilizan como una técnica de análisis de las fallas y la segunda para un procedimiento de AMEF, para que resulte un buen análisis se determina el NPR (número de prioridad de riesgo).

$$NPR = OxGxD (5)$$

El NPR tiene tres índices de probabilidad las cuales sus valores son del 1 al 10 y en la evaluación su valor está en un rango de 1 al 1000 el valor mayor viene ser el más crítico para el AMEF.

- Gravedad: Es la probabilidad de tener fallas en el proceso, también podría decir que son las causas de falla para un efecto.
- Ocurrencia: Es la frecuencia con que ocurren las fallas, en este contexto se tiene cuando hay la probabilidad de que se produzca la falla y cuando ocurra la falla y sea nocivo para la máquina.
- Detección: Nos indica si la causa de fallo o el modo de fallo que se suscite es reportada, básicamente tiene que ver con los controles de detección.

Tabla 1

Escala del NPR y situación de riesgo de la técnica de mantenimiento AMFF.

<u>Listala del INFIT y situacion de nes</u>	go de la tecnica de mantenimiento AlviEr
ESCALA	SITUACION DE ANALISIS
NPR > 200	Inaceptable (I).
200> NPR > 125	Reducción deseable (R).
125> NPR	Aceptable (A).

Valores para ser utilizados en el resultado de criticidad del AMEF

Para una adecuada utilización del AMEF se tiene criterios de análisis para el desarrollo en la obtención del NPR.

Tabla 2 Criterios de análisis del NPR de la técnica de mantenimiento AMEF

OCURRENCIA	
Descripción	Puntaje
1 falla en más de 2 años	1
1 falla cada 2 años	2-3
1 falla cada 1 año	4-5
1 falla entre 6 meses y 1 año	6-7
1 falla entre 1 a 6 meses	8-9
1 falla al mes	10
GRAVEDAD	
Descripción	Puntaje
Ínfima, imperceptible	1
Escasa, falla menor	2-3
Baja, fallo inminente	4-5
Media, fallo pero no para el sistema	6-7
Elevada, falla crítica	8-9
Muy elevada, con problemas de seguridad, no conformidad	10
DETECCION	
Descripción	Puntaje
Obvia	1
Escasa	2-3
Moderada	4-5
Frecuente	6-7
Elevada	8-9
Muy elevada	10

De estos puntajes de ocurrencia, gravedad y detención se multiplican estos datos y se obtiene el puntaje final del NPR.

2.2.6 Descripción del proceso de producción de la planta metal mecánica el Detalle S.R.L.

La empresa metal mecánica El Detalle S.R.L. Ubicada Av. Pachacutec Mz G1 Lote 5-2 en el parque industrial cruce av. El sol con av. Pachacutec estratégicamente ubicada al sur de Lima. El cual se dedica a la fabricación de ferretería eléctrica para proyectos electromecánicos de BT y MT.

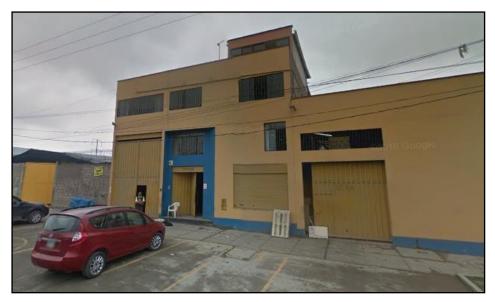


Figura 7: Vista frontal de empresa metal mecánica El Detalle S.R.L. (Fuente: Elaboración propia)

Dentro de sus principales productos (en el anexo 1 se mostrara los planos de los productos fabricados en la empresa) podemos mencionar los siguientes:

- Pernos de anclaje.
- Varillas de anclaje.
- Pastorales.
- Tuerca tipo ojal.
- Crucetas de Angulo.
- Canaletas.
- Grapas de anclaje.
- Abrazaderas de sujeción.
- Perno tipo gancho.
- Pernos tipo angular, etc

Figura 8: Principales productos de empresa metal mecánica El Detalle S.R.L. (Fuente: página web de la empresa www.eldetalle.com.pe)

La planta de la empresa metal mecánica El Detalle S.R.L. tiene 5 áreas de producción conformadas de la siguiente manera:

2.2.6.1 Área de corte de materia prima.

En este proceso se realiza el corte de toda la materia prima de la producción, ángulos de diferentes medidas, tubos circulares, varillas circulares, platinas de acero, planchas de acero. Luego de la salida de almacén de materia prima los diferentes materiales dependiendo el producto a fabricar pasan al área de las máquinas de corte, en esta área se tiene las siguientes maquinas (anexo 2):

- Cizalla múltiple: Se utiliza para el corte de barras redondas de hasta 1 pulga de diámetro, corte de platinas de acero y ángulos estructurales, para el proceso se coloca el material en soportes con rodillos para facilidad de manipulación del operador y conforme se corte las varillas se deslizan por los rodillos, de igual manera para las platinas de acero. Esta máquina es la que más se utiliza ya que la mayoría de productos que se vende en la empresa son pernos, varillas y crucetas en sus distintas formas.
- Guillotina hidráulica: En esta máquina se utiliza para cortar las planchas de acero de longitud de 1.2 m x 2.4m, para hacer platinas que posteriormente serán cortadas en la cizalla múltiple.
- Tronzadora de tubos: En esta máquina se realiza el corte de tubos redondos de diámetros de ³/₄", 1", 11/2" y 2", para los diferentes tipos de pastorales dependiendo los requerimientos del cliente.

2.2.6.2 Área de prensado.

Aquí es donde se mecaniza mediante matrices para ser prensado dependiendo del producto que se requiere, no todas las prensas siempre están en operación ya que para la fabricación de los productos solo se utiliza algunas de estas, es por tal razón que estas máquinas del área de prensado no trabajan en su máxima capacidad de operación, en esta área se tiene la siguientes maquinas:

- Prensas mecánicas: Utilizada para mecanizar los diferentes productos que fabrica la fábrica, con matrices de tipo punzón (para realizar agujeros), para dar forma (para el doblado de barras redondas en la fabricación de pernos y varilla y doblado de ángulos en las crucetas), para corte se lo amerita el proceso cuando se requiera el corte de pequeñas partes sobrantes (rebarbas) de los productos en el proceso.
- Prensas excéntricas: En estas máquinas se utiliza para dar forma a los tipos de pernos, con la ayuda de un pequeño horno para calentar las barras redondas se procede al maquinado de los pernos en matrices que le dan la forma requerida del producto. (Tuerca tipo ojo, pernos de anclaje, pernos tipo corona, perno tipo ojal)
- Prensas hidráulicas: Aquí estas máquinas principalmente se utilizan para forjar pernos de tipo cabeza hexagonal, con ayuda de un pequeño horno se caliente la barra redonda y se procede al

maquinado con la matriz correspondiente. También utilizada para corte de rebarbas de los productos que lo ameriten.

 Dobladora de tubos: Utilizada para el proceso de doblado de tubos redondos para la fabricación de los diferentes tipos de pastorales, dependiendo del requerimiento del cliente.

2.2.6.3 Área de laminado.

En esta área se realiza el roscado de todos los productos que necesiten de esta operación como son los pernos y las tuercas, cabe mencionar que también es esta área no opera en su máxima capacidad y cuentan con máquinas como:

- Torno tipo revolver: Básicamente para el roscado de los diferentes tipos de pernos de la producción, se cuenta con 2 de estas máquinas en esta área.
- Maquina roscadora automática de rodillos: En esta máquina se utiliza para el roscado de la varillas (espárragos roscados la cual se necesita que toda la longitud de la barra redonda sea roscada).

2.2.6.4 Área de soldadura.

En esta área luego del proceso de prensado, dependiendo del producto pasa a ser soldado las partes que lo requieran, se realiza la soldadura por arco eléctrico y se hace el acabo para pasar a la última área. Las maquinas usadas en esta área son las siguientes:

 Máquina de soldar de arco eléctrico con varilla revestida: Utilizada para el soldar piezas que no requieran un acabo especial y para unir piezas que posteriormente pasaran a la maquina MIG. (básicamente para apuntalara las piezas que luego serán terminadas en la maquina MIG)

 Máquina de soldar tipo MIG: En esta máquina se utiliza para dar la última pasada de soldadura de la piezas, ya que por el buen acabado que realiza este tipo de maquina luego de la soldadura se limpia las escorias y pasa al área de acabados.

2.2.6.5 Área de recubrimiento (acabado).

Aquí se hace la última parte del proceso el cual es el recubrimiento de zinc en caliente de las piezas fabricadas, este recubrimiento se hace en todos los productos ya que estos por estar montados para la distribución eléctrica están a la intemperie y necesitan de una protección extra contra la corrosión. En esta área primero se prepara el producto para su recubrimiento con zinc, primero pasa por una tina de soda caustica, para limpiar las grasa luego una tina con agua para limpiar restos de soda caustica, posteriormente pasa a una tina con ácido clorhídrico para el decapado del acero, luego finalmente se sumerge en el zinc caliente y luego se enfría inmediatamente después con agua.

2.2.7 Puntos críticos en el proceso de producción.

En el contexto donde se realizó el presente trabajo la planta metal mecánica El Detalle S.R.L tiene en todo su proceso de producción 12 máquinas, los puntos críticos para esta producción son máquinas que al parar por diversas razones de alguna manera afectan a toda la producción generando pérdidas, por el historial que se realizó el cual se detallara en el capítulo III, se concluye que los puntos críticos son las maquinas del área de corte de materia prima las cuales son las que habilitan de material para las siguientes áreas realicen su operación con normalidad, a continuación se grafica el flujo de producción indicando estos puntos críticos.

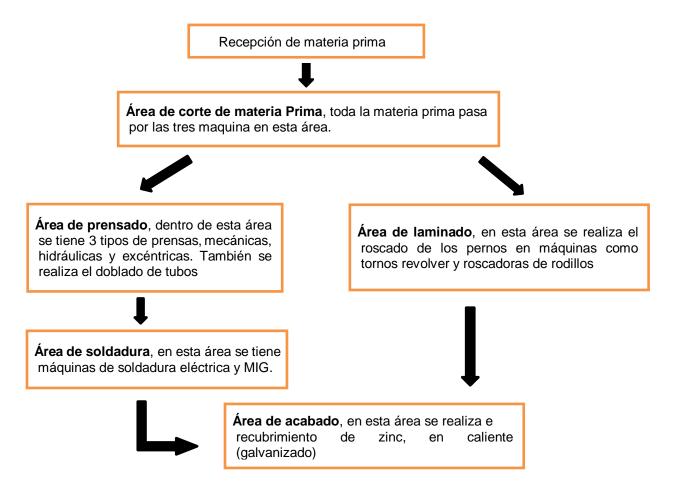


Figura 9: Proceso de producción de planta metal mecánica El Detalle S.R.L.

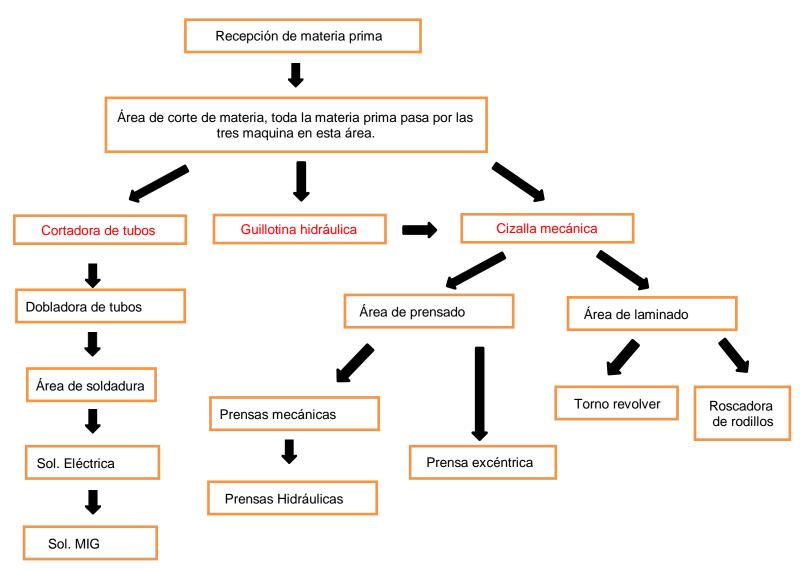


Figura 10: Puntos críticos en el proceso de producción de la empresa metal mecánica El Detalle S.R.L.

2.2.8 Pérdidas de producción por mal estado de equipos.

Las pérdidas de producción se originan principalmente por las paradas imprevistas de las maquinas en el área de corte de materia prima ya que en esta área es donde comienza el proceso de producción, al tener un plan de trabajo por parte del área de producción, el número de piezas cortadas para el proceso de producción esta se ve afectado en la reducción de las piezas cortadas, por consecuencias de las paradas de la maquinas en esta área de corte de materia prima, en una jornada normal de trabajo se logra terminar 500 pernos galvanizados esta se reduce en 80 pernos por cada hora de parada de una de las maquinas del área de corte de materia prima. En resumen la falta de un plan de mantenimiento eficiente generan estas paradas de las maquinas en el área de corte de materia prima que finalmente repercute en la producción de la planta generando pérdidas y lo más grave para toda empresa es la confianza de sus clientes ya que al tener estas pérdidas de cantidades en su productos finales que en casos extremos conlleva a la impuntualidad con los plazos de entrega.

2.3 Definición de términos básicos

- Disponibilidad: Es la probabilidad de que una maquina realice su operación normal cuando sea requerido, excepto en los periodos de mantenimiento cuando no se utiliza la máquina.
- Ciclo de vida: Es tiempo en el cual una, maquina, proceso, producto todavía conserva su capacidad de utilización, hasta que acabo su uso.
- Calidad: Se define a la calidad como un producto o servicio que satisface la necesidad y requerimientos de los clientes.
- Inspección: Actividad del mantenimiento que se realiza con mucha frecuencia y poca duración sin interrupción de la operatividad de las máquinas.
- Frecuencia de fallas: Se refiere a la división de la cantidad de fallas entre el tiempo donde se producen las fallas.
- Mantenibilidad: Es la probabilidad de que una maquina después de una falla sea reparado completamente dejando en su estado después de un tiempo determinado.
- Confiabilidad: Es la probabilidad de que una maquina opere normalmente sin fallar en un tiempo determinado.
- Tiempo medio de reparación (MTTR): Es el tiempo promedio que se utiliza para una reparación que se obtiene por las fallas que se presenten, pueden darse varios tiempos fuera de servicio en un periodo de tiempo, los cuales son los tiempos de reparación. En concusión es un indicador importante del mantenimiento.

- Tiempo medio entre fallas (MTBF): Es el tiempo promedio de operación continua de una maquina en un periodo de tiempo, se determina por las fallas que pudieran ocurrir en la máquina.
- Falla: Se define como un evento no deseado que provoca una pérdida parcial o total en la capacidad de una máquina para realizar sus operaciones de la misma forma con que fue diseñada.
- Fallas primarias: Son el resultado de una deficiencia de una maquina o uno de sus componentes cuando está en sus condiciones de operación normales.
- Fallas secundarias: Son el resultado de una deficiencia de una maquina o uno de sus sistemas cuando es utilizado fuera de sus condiciones normales de operación, fuera del rango de diseño.
- Modo de falla: Se refiere a un evento no deseado la cual es causada por una falla.
- Efecto de falla: Es la consecuencia ocasionada por un falla en una determina maquina o sistema de esta.
- Frecuencia nominal: Es la capacidad de vibrar que posee cada cuerpo, depende mucho de sus características de sus materiales que los componen.
- Viscosidad: Es una propiedad física de los fluidos, es la capacidad de resistencia a su movimiento esto ocasionado por partículas del fluido.
- Oxidación: Es lo que resulta de la reacción química del oxígeno con cualquier otra sustancia, este fenómeno es muy perjudicial en los aceros que es el principal material de fabricación de las máquinas.

CAPITULO III

DESARROLLO DEL TRABAJO DE SUFICIENCIA PROFESIONAL

3.1 Modelo de solución propuesto

En el modelo de solución propuesto un plan de mantenimiento para el área de corte de materia prima de la empresa metal mecánica el Detalle S.R.L. se desarrollara los siguientes aspectos fundamentales:

- Se realizara un análisis situacional del área de corte de materia prima.
- Se realizara un análisis de modos y efectos de falla (AMEF) de las máquinas que operan en el área de corte de materia prima.
- Se realizara una propuesta de plan de mantenimiento en función a los resultados de análisis de los modos y efectos de falla (AMEF).
- Se calculara y analizara los parámetros de disponibilidad antes y después de la propuesta de plan de mantenimiento.

3.1.1 Análisis situacional del área de corte de materia prima

Actualmente en el proceso de producción se genera una sobrecarga de trabajo en las maquinas del área de corte de materia prima ya que las máquinas de esta área alimenta de material para todas las demás áreas de producción de la empresa (prensado, soldadura y laminado) las cuales su procesos se explicó detalladamente en el capítulo anterior. En la siguiente figura se muestra en detalle el proceso del área de corte de materia prima.

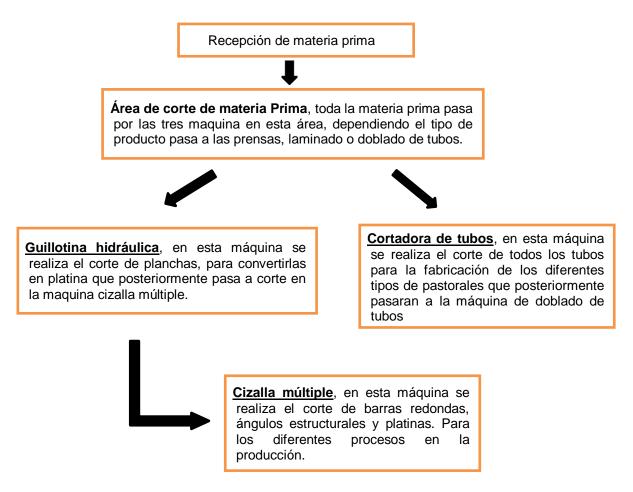


Figura 11: Proceso de producción del área de corte de materia prima de la empresa metal mecánica El Detalle S.R.L

3.1.2 Etapas de AMEF aplicado en el proceso corte de materia prima.

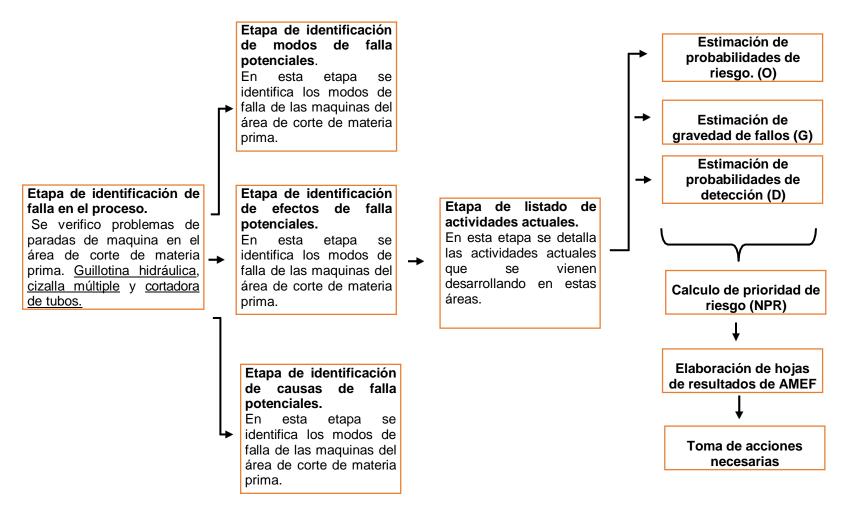


Figura 12: Etapas del AMEF aplicado al proceso del área de corte de materia prima de la empresa metal mecánica El Detalle S.R.L.

3.1.3 Costo instalado de las maquinas del área de corte de materia prima.

Como parte del análisis se presenta el costo de los equipos los cuales en relación a los beneficios obtenidos luego de la implementación del plan de mantenimiento que posteriormente se presentan en cuadros comparativos nos indican que es rentable realizar este plan de mantenimiento y genera ganancias en la producción ya que se evita retrasos en la entrega de los productos finales a sus clientes.

Tabla 3 Costo instalado de equipos del área de corte de materia prima.

COSTO DE INSTALACION DE EQUIPOS DEL AREA DE CORTE DE MATERIA PRIMA								
	Cizalla múltiple Cortadora de tubos Guillotina hidráu							
costo de	S/.	S/.	S/.					
adquisición	70.000,00	10.000,00	120.000,00					
costo de	S/.	S/.	S/.					
montaje	2.000,00	1.000,00	2.000,00					
costo total	S/.	S/.	S/.					
	72.000,00	11.000,00	122.000,00					

Costo instalado de equipos del área de corte de materia prima área elaborado con datos de empresa El Detalle S.R.L.

3.1.4 Costo de mantenimiento correctivo

Se estimó el costo de mantenimiento correctivo de las áreas de producción de esta base de datos se concluye que el mayor costo por mantenimiento correctivo proviene del área de corte de materia prima por lo que esto nos indicó que tenemos un problema en esta área ya que la mayor parte de las actividades son de tipo correctivo y realizadas por empresas contratistas, estos costos están contemplados la suma de los repuestos utilizados y el costo de servicio de las empresas de servicios de mantenimiento, es así que se decide implementar un plan de mantenimiento para reducir las paras y por consecuencia los costos de mantenimiento correctivo.

Tabla 4 costo de mantenimiento correctivo del año 2017

COSTO DE I	MANT	ENIMIENTO	O COR	RECTIVO D	E LAS	AREAS DE F	PRODU	JCCION DE	L AÑO	2017
	COR	TE	PRE	NSA	SOL	DADURA	LAM	INADO	ACA	BADO
enero	S/.	3.800	S/.	1.200	S/.	1.000	S/.	1.500	S/.	1.150
febrero	S/.	3.200	S/.	900	S/.	700	S/.	1.200	S/.	950
marzo	S/.	3.500	S/.	1.170	S/.	850	S/.	900	S/.	850
abril	S/.	3.470	S/.	870	S/.	700	S/.	800	S/.	950
mayo	S/.	3.580	S/.	900	S/.	940	S/.	750	S/.	690
junio	S/.	4.000	S/.	1.000	S/.	900	S/.	1.300	S/.	850
julio	S/.	3.790	S/.	1.120	S/.	940	S/.	1.100	S/.	1.000
agosto	S/.	3.250	S/.	1.300	S/.	990	S/.	870	S/.	750
septiembre	S/.	3.400	S/.	1.200	S/.	870	S/.	1.135	S/.	830
octubre	S/.	3.150	S/.	1.300	S/.	1.200	S/.	950	S/.	780
noviembre	S/.	3.800	S/.	1.170	S/.	960	S/.	860	S/.	740
diciembre	S/.	3.900	S/.	1.140	S/.	900	S/.	1.100	S/.	835
COSTO TOTAL	S/.	42.840	S/.	13.270	S/.	10.950	S/.	12.465	S/.	10.375

Costos de cada mes es el total de todos los equipos de cada área elaborado con datos de empresa El Detalle S.R.L.

En la tabla nº 3 están contemplados la suma los gastos de contratación de terceros, gastos de repuestos utilizados y gastos de energía ligados a la intervención. Estos costos son los generados por actividades netamente correctivas y son los que se reducirán con la implementación del plan de mantenimiento.

De la anterior tabla nº 3 se debe mencionar que son los precios de mantenimiento correctivos del global de todos equipos por cada área en mención.

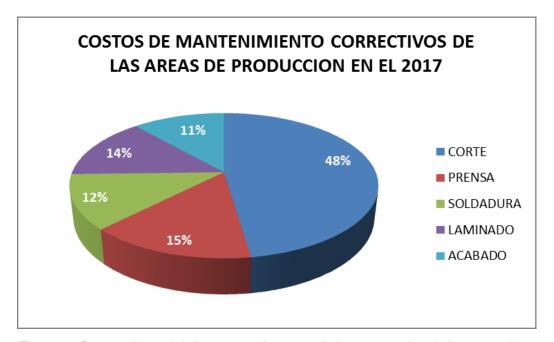


Figura 13: Porcentaje total de los costos de mantenimiento correctivo de las areas de produccion. (Fuente: elaboracion propia con datos de la empresa El Detalle S.R.L.)

Se observa del total de los costos por mantenimiento correctivos de todas las áreas de producción el 48% de estos costos pertenecen solo al área de corte de materia prima el cual es un índice alto que se reducirá con la propuesta del plan de mantenimiento.

En este contexto otro de los puntos que nos direccionaron para realizar el presente trabajo fue el historial de paradas de equipos de las diferentes áreas de producción del año 2017, en el cual esta data nos indica que el área de corte de materia prima es la que presenta más paradas respecto con las otras áreas de producción. Se mostrara un cuadro resumen de las paradas no programadas por mes de cada área, estos datos son el promedio de las paradas de todos los equipos de cada área:

Tabla 5
Total de paradas no programas de las áreas de producción del año 2017.

PARADAS NO PROGRAMADAS DE LAS ÁREAS DE PRODUCCIÓN DEL AÑO 2017								
	CORTE	PRENSA	SOLDADURA	LAMINADO	ACABADO			
enero	8	3	1	3	1			
febrero	9	2	1	2	1			
marzo	8	2	0	2	2			
abril	7	3	1	2	1			
mayo	7	1	2	2	1			
junio	8	1	2	1	2			
julio	9	3	1	3	1			
agosto	7	2	1	1	2			
septiembre	8	3	1	2	1			
octubre	9	1	1	2	1			
noviembre	8	3	2	1	1			
diciembre	9	2	1	2	1			

Número total de paradas no programadas por mes de cada área, elaboración propia con datos de la empresa El Detalle S.R.L.

Este número de paradas de cada área de producción es un promedio de todas las paradas que se presentaron en el periodo de cada mes de cada equipo en su respectiva área de producción.

En la siguiente grafica de barras se puede observar claramente lo crítico que esta esta área de corte de materia prima en comparación con las demás áreas de producción el cual evidencian un problema en sus equipos.

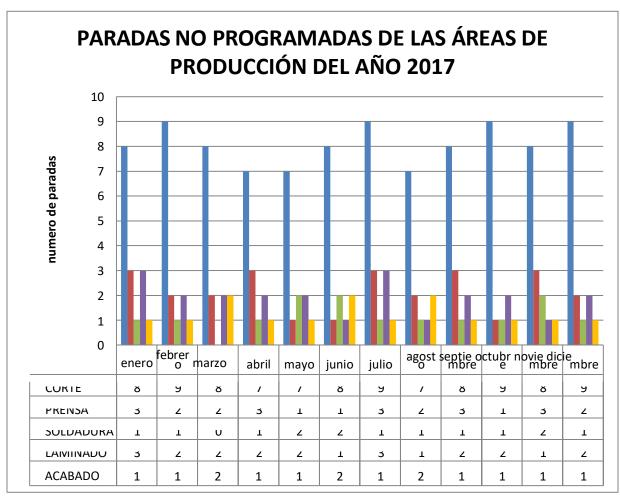


Figura 14: Número total de paradas no programadas de las áreas de producción del año 2017(Fuente: elaboración propia con datos de la empresa El Detalle S.R.L.)

Para resumir el estado actual de la empresa respecto a sus paradas no programadas en todas sus áreas de producción se presenta a continuación el porcentaje de cada área de todo el año 2017, se observa que el porcentaje más alto de paradas no programadas es de 55% y pertenece al área de corte de materia prima el cual nos direcciono para realizar el plan de mantenimiento en esta área.

Figura 15: Porcentajes total del número de paradas no programadas de las áreas de producción del año 2017. (Fuente: elaboración propia con datos de la empresa El Detalle S.R.L.)

3.1.5 Evaluación del estado actual de conocimiento del personal de mantenimiento, referido a las técnicas de mantenimiento y parámetros de disponibilidad.

En la empresa metal mecánica El Detalle S.R.L. el área de mantenimiento está conformada por tres (3) técnicos, de los cuales dos (2) son técnicos de mecánica de mantenimiento, un (1) técnico electricista industrial y un (1) practicante técnico, encargados de las diferentes actividades que demanda el área de mantenimiento. Para conocer el grado de conocimiento referente a técnicas de mantenimiento y parámetros de disponibilidad se realizó una encuesta a cada una de las personas del área, esta información servirá para ver estado actual de capacitación del personal esto como indicar importante a tener en cuenta para la evaluación del estado actual del área de mantenimiento.

ENCUESTA DIRIGIDA AL PERSONAL DEL AREA DE MANTENIMIENTO									
PREGUNTAS	RESPUESTA.	PROMEDIO							
1LA EMPRESA TIENE UN PLAN DE MANTENIMIENTO DEFINIDO	SI	0%							
11LA EMPRESA HENE ON PLAN DE MANTENIMIENTO DEFINIDO	NO	100%							
2 CONOCE LA TECNICA DE MANTENIMIENTO ANALISIS DE MODOS Y	SI	50%							
EFECTOS FALLAS (AMEF)	NO	50%							
3REALIZO AGUNA VEZ ESTA TECNICA DE MANTENIMIENTO	SI	0%							
3REALIZO AGONA VEZ ESTA TECNICA DE MANTENTIMIENTO	NO	100%							
4CONOCE EL SIGNIFICADO DE TIEMPO MEDIO ENTRE FALLAS (MTBF)	SI	25%							
4CONOCE EL SIGNIFICADO DE TIEMPO MEDIO ENTRE FALLAS (MTBF)	NO	75%							
5 SABE COMO CALCULAR Y ANALIZAR ESTE PARAMETRO	SI	0%							
5 SABE COIVIO CALCULAR Y ANALIZAR ESTE PARAIVIETRO	NO	100%							
6CONOCE EL SIGNIFICADO DEL TIEMPO MEDIO PARA REPARACION (SI	25%							
MTTR)	NO	75%							
7 SABE COMO CALCULAR Y ANALIZAR ESTE PARAMETRO	SI	0%							
7 SABE COIVIO CALCULAR Y ANALIZAR ESTE PARAIVIETRO	NO	100%							
8SE DIAGNOSTICA RAPIDAMENTE LAS FALLAS DE LOS EQUIPOS	SI	25%							
0SE DIAGNOSTICA KAPIDAIVIENTE LAS FALLAS DE LOS EQUIPOS	NO	75%							
	CI	4000/							

Figura 16: Resultados de la encuesta realizada al personal de mantenimiento. (Fuente: elaboración propia con datos de la empresa El Detalle S.R.)

Por tener una población pequeña (4 personas del área de mantenimiento) no fue necesario determinar una muestra y se realizó una encuesta directa. De acuerdo con los resultados de la encuesta representada en la figura 13 se observa que el porcentaje de cada pregunta que respondió el personal de mantenimiento referente a las técnicas de mantenimiento y parámetros de disponibilidad es baja, esto indica que el personal de mantenimiento de la empresa meta mecánica El Detalle S.R.L. no está capacitado en estos temas de vital importancia en el mantenimiento, en conclusión esta falta de conocimiento también incide negativamente en la calidad de las actividades del área de mantenimiento.

3.1.6 Desarrollo del AMEF para las maquinas del área de corte de materia prima.

Como se mencionó en el capítulo II, las maquinas del área de corte de materia prima son: cizalla múltiple; guillotina hidráulica y cortadora de tubos; a continuación se presenta el análisis del AMEF:

NOMBRE DE EQUI	PO: CIZALLA MULTIPLE	ELABORADO POR:	N° DE PAG. 1 DE 7	N	N° DE AMEI				
SISTEMA: ELECTRIC	<u> </u>			CARLOS ROJAS	FECHA: ENERO 2018 01				
SISTEIVIA: ELECTRIC		CARLOS ROJAS	CONDICIONES ACTUALES						
ELEMENTO O					ACTIVIDADES				
PIEZA	FUNCIONAMIENTO	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	ACTUALES	D	G	0	NPR
	ENVIA SEÑAL A	NO HAY SEÑAL DE PULSO	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	5	8	4	160
BOTONERA DE MANDO	CONTACTORES DE ARRANQUE	SE QUEDA PEGADO PULSADOR	FALLA EN EL ARRANQUE	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	5	8	4	160
CONTACTORES	INICIA EL COMANDO DEL ARRANQUE Y	BOBINA DESERGIZADA	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL / CORRECTIVOS	5	8	4	160
CONTACTORES	ENCLAVAMIENTO DEL SISTEMA	NO ENCLAVA CONTACTOR	CONTACTOR SE RECALIENTA	CABLE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	8	7	224
CABLE ELECTRICO	CONDUCE ENERGIA ELECTRICA DEL SISTEMA DE ARRANQUE	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	CABLE SULFATADO	MANT. PREVENTIVO	3	8	5	120
		GENERA RUIDO ANOMALO	FALLA EN OPERACIÓN DE EQUIPO	DESGASTE DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		VIBRACION	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
MOTOR ELECTRICO	GENERA MOVIMIENTO PARA LA OPERACION DE EQUIPO	RECALENTAMIENTO	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		MOTOR SE DETIENE	SOBRECARGA DE MOTOR	DESGASTE DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		CARCASA HACE TIERRA	FALLA EN OPERACIÓN DE EQUIPO	CABLE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	7	3	84
RELE DE PROTECCION	PROTEGE DE SOBRECARGAS DE SISTEMA	NO CIERRA CIRCUITO	FALLA EN LA OPERACIÓN DEL EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	4	8	3	96

Cuadro de análisis de AMEF, donde D es detección; G es gravedad; O es ocurrencia y NPR es nivel de prioridad de riesgo.

NOMBRE DE EQUI	PO: CIZALLA MULTIPL	ELABORADO POR:	N° DE PAG. 2 DE 7		N° DE AME				
SISTEMA: NACCANICO				FECHA: ENERO 2018		01			
SISTEMA: MECAN	ICO			CARLOS ROJAS	CONDICIONES ACTUALES				
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	ACTIVIDADES ACTUALES	D	G	0	NPR
	DEALIZA EL MONIMIENTO	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
BIELA	REALIZA EL MOVIMIENTO DEL EJE PARA EL CORTE	NO OPERA CON FUERZA NECESARIA PARA EL CORTE	DEFORMACION	PIEZAS DE MONTAJE SUELTO	MANT. PREVENTIVO	5	8	3	120
MANIVELA	ENCARGADO DE GENERAR EL MOVIMIENTO VERTICAL	NO CONECTA CON LA BIELA	DEFORMACION DE ACOPLES	PIEZAS DE MONTAJE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	8	5	160
IVIANIVELA	EN LA BIELA	DESBALANCEO	VIBRACIONES	FALLA EN MONTAJE	INSPECCION VISUAL / CORRECTIVOS	4	8	7	224
VOLANTE MATRIZ	ACUMULA ENERGIA PARA EL PROCESO DE CORTE	DESBALANCEO	VIBRACIONES	DESGASTE DE PIEZAS ACOPLADAS	MANT. PREVENTIVO	4	9	6	216
	ENCARGADO DE CONECTAR	GOLPE AL REALIZAR EL ACOPLE	SOBRECALENTAMIENTO DE PIEZAS	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	6 9 4	4	216
EMBRAGUE MECANICO	LA VOLANTE CON EL MANIVELA	NO REALIZA ACOPLE	NO REALIZA OPERACIÓN DE CORTE	PIEZAS DE MONTAJE SUELTO	INSPECCION VISUAL / CORRECTIVOS	5	9	5	225
PALANCA DE OPERACIÓN	REALIZA LA CONEXION CON EL PIN DE EMBRAGUE	NO REALIZA OPERACIÓN	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	4	9	5	180
PORTA CUCHILLAS	ENCARGADO DE SUJECION Y CENTRADO DE CUCHILLAS	DESALINEAMIENTO	CORTE DEFECTUOSO	PIEZAS DE MONTAJE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	8	7	224
EJE DE TRANSMISION	ENCARGADO DE TRANSMITIR EL MOVIMIENTO DE LA VOLANTE MATRIZ	DESBALANCEO	VIBRACIONES	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	5	8	5	200
BRAZOS METALICOS DE BIELA	SE ENCARGA DE REALIZAR EL GIRO DE LA BIELA	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
FAJA DE TRANSMISION	CONECTA EL MOTOR CON LA VOLANTE MATRIZ	DESLIZAMIENTODE FAJA	REDUCCION DE FUERZA EN EL CORTE	FALLA EN MONTAJE	MANT. PREVENTIVO	5	8	5	200
PIN DE EMBRAGUE	GENERA EL CONTACTO PARA FUNCIONAMIENTO DE EMBRAGUE	NO CONECTA CON EMBRAGUE	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	5	9	5	225

Cuadro de análisis de AMEF, donde D es detección; G es gravedad; O es ocurrencia y NPR es nivel de prioridad de riesgo.

NOMBRE DE EQUI	PO: GUILLOTINA HIDR	AULICA MARCA WIV	IW	ELABORADO POR:	N° DE PAG. 3 DE 7	١	l° D	E AN	∕IEF:
SISTEMA: ELECTRIC	<u> </u>			CARLOS BOLAS	FECHA: ENERO 2018		01		
SISTEIVIA: ELECTRIC		CARLOS ROJAS	CONDICIONES ACTUALES						
ELEMENTO O					ACTIVIDADES				
PIEZA	FUNCIONAMIENTO	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	ACTUALES	D	G	0	NPI
CABLE ELECTRICO	CONDUCE ENERGIA ELECTRICA DEL SISTEMA DE ARRANQUE	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	CABLE SULFATADO	MANT. PREVENTIVO	3	8	5	120
VARIADOR DE	REGUA LA VELOCIDAD DE	FALLA A TIERRA	CORTOCIRCUITO A TIERRA DE MOTOR	CABLE SULFATADO	INSPECCION VISUAL / CORRECTIVOS	4	8	4	128
FRECUENCIA	ROTACION DEL MOTOR	NO REGULA VELOCIDAD	SOBRECALENTAMIENTO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL / CORRECTIVOS	5	8	5	200
CONTACTORES	INICIA EL COMANDO DEL ARRANQUE Y	BOBINA DESERGIZADA	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL / CORRECTIVOS	5	8	4	160
CONTACTORES	ENCLAVAMIENTO DEL SISTEMA	NO ENCLAVA CONTACTOR	CONTACTOR SE RECALIENTA	CABLE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	8	7	224
CABLE ELECTRICO	CONDUCE ENERGIA ELECTRICA DEL SISTEMA DE ARRANQUE	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	CABLE SULFATADO	MANT. PREVENTIVO	3	8	5	120
RELAY DE REGURIDAD	REALIZA E PARO DE SEGURIDD DE LOS ACTUADORES	NO CIERRA CIRCUITO	FALLA EN LA OPERACIÓN DEL EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	4	8	3	96
		GENERA RUIDO ANOMALO	FALLA EN OPERACIÓN DE EQUIPO	DESGASTE DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		VIBRACION	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
MOTOR ELECTRICO	GENERA MOVIMIENTO PARA LA OPERACION DE EQUIPO	RECALENTAMIENTO	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		MOTOR SE DETIENE	SOBRECARGA DE MOTOR	DESGASTE DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		CARCASA HACE TIERRA	FALLA EN OPERACIÓN DE EQUIPO	CABLE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	7	3	84
	ENVIA SEÑAL A CONTACTORES DE	NO HAY SEÑAL DE PULSO	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	5	8	4	160
BOTONERA DE MANDO	ARRANQUE	SE QUEDA PEGADO PULSADOR	FALLA EN EL ARRANQUE	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	5	8	4	160

Cuadro de análisis de AMEF, donde D es detección; G es gravedad; O es ocurrencia y NPR es nivel de prioridad de riesgo.

NOMBRE DE EQUIPO: GUILLOTINA HIDRAULICA MARCA WMW				ELABORADO POR:	N° DE PAG. 4 DE 7	NI°	O1		
CICTERAA. NAECANU	SISTEMA: MECANICO			CARLOS ROJAS	FECHA: ENERO 2018	N° DE AMEF: 01			. 01
				CARLOS ROJAS	CONDICIONES ACTUALES				
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	ACTIVIDADES ACTUALES	D	G	0	NPR
	ENCARGADO DE	AVANCE DE PISTON LENTO	CORTE DEFECTUOSO	AIRE EN EL SISTEMA HIDRAULICO	INSPECCION VISUAL / CORRECTIVOS	5	9	5	225
CILINDRO HIDRAULICO	ENTREGAR ENERGIA MECANICA A SISTEMA	PISTON TIENE POCA FUERZA	NO REALIZA OPERACIÓN DE CORTE	NIVE DE ACEITE BAJO	INSPECCION VISUAL / MANT. PREVEN.	5	8	3	120
CONJUNTO BULON-	ARTICULA EL MOVIMIENTO	NO REALIZA ARTICULACION	NO REALIZA OPERACIÓN DE CORTE	PIEZAS DE MONTAJE SUELTO	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
BIELAS	DEL CILINDRO HIDRAUICO	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	4	9	5	180
CONJUNTO BIELA DE TRANSMISION	ENCARGADA DE LA SUJECION DEL CUERDO PORTA DE CUCHILLAS	DESALINEAMIENTO	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	MANT. PREVENTIVO	4	9	6	216
BIELA TRIANGULAR DE	ARTICULA EL MOVIMIENTO	NO REALIZA ARTICULACION	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
ACCIONAMIENTO	DEL CUERPO PORTA CUCHILLAS	ENTO ARTICULACION DE CORTE ACOPLADAS CORRECTIVOS 6 9 4	4	144					
BIELA RECTA	ENCARGADO DE LA UNION DE LAS PIEZAS PARA MOVIMIENTO DEL CUERPO PORTACUCHILLAS	FRICCION EN LA OPERACIÓN	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	4	8	4	128
DODTA CUCUMA AC	ENCARGADO DE SUJECION	DESALINEAMIENTO	CORTE DEFECTUOSO	PIEZAS DE MONTAJE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	8	5	160
PORTA CUCHILLAS	Y CENTRADO DE CUCHILLAS	CUCHILLAS SUELTAS	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
REGULADORES DE CUICHILLA	VARILLAS ROSCADAS QUE PERMITEN REGULAR POSICION DE CUCHILLAS	SE TRABA AL MOMENTO DE REGULAR	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	5	8	5	200

PISONADORES	SUJETA LAS PIEZAS A CORTAR PARA EVITA QUE SE MUEVA	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
TISONADORES	EN LA OPERACIÓN	NO SUJETA CON LA FUERZA NECESARIA	CORTE DEFECTUOSO	FALLA EN MONTAJE	MANT. PREVENTIVO	5	8	5	200
CONJUNTO DE	REGULA LA LONGITUD DE	DESBALANCEO	VIBRACIONES	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	5	8	5	200
TOPE DE CUCHILLAS	CARRERA DE LAS CUCHILLAS	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216

NOMBRE DE EQUI	PO: GUILLOTINA HIDR	AULICA MARCA WM	1W	ELABORADO POR:	N° DE PAG. 5 DE 7		N° DE AM		
CICTERAA LUDDALI	1100			CARLOS BOLAS	FECHA: ENERO 2018		01		
SISTEMA: HIDRAU	LICO			CARLOS ROJAS	CONDICIONES ACTUALES				
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	ACTIVIDADES ACTUALES	D	G	0	NPR
ELECTROVALVULA	DISTRIBUYE EL ACEITE DEL SISTEMA HACIA OS ACTUADORES	NO ABRE VALVULA	NO REALIZA OPERACIÓN DE CORTE	PRESION BAJA	INSPECCION VISUAL / CORRECTIVOS	5	9	5	225
VALVULA LIMITADORA DE PRESION	REGULA LA PRESION DEL SISTEMA	DEMORA EN REGULACION	NO REALIZA OPERACIÓN DE CORTE	MUELLE DESGASTADO	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
VALVULA DE SECUENCIA	BLOQUEA EL CIRCUITO A UNA PRESION ESTABLECIDA	PISTON NO REALIZA OPERACIÓN	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	MANT. PREVENTIVO	4	9	6	216
MANGUERA HIDRAULICA	TRANSPORTA EL FLUIDO HIDRAULICO	PISTON CON POCA FUERZA	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
BOMBA HIDRAULICA	IMPULSA EL ACEITE A TODO EL SISTEMA	GOPETEO ANORMAL EN EL FUNCIONAMIENTO	FALLA EN LA OPERACIÓN	AIRE EN EL SISTEMA	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
	EL SISTEIVIA	FRICCION EN LA OPERACIÓN	FUGA DE FLUIDO	EMPAQUES ROTOS	INSPECCION VISUAL / CORRECTIVOS	5	9	5	225
CHINDDO HIDDAHI ICO	ENCARGADO DE ENTREGAR	AVANCE DE PISTON LENTO	CORTE DEFECTUOSO	AIRE EN EL SISTEMA HIDRAULICO	INSPECCION VISUAL / CORRECTIVOS	5	9	5	225
CILINDRO HIDRAULICO	ENERGIA MECANICA A SISTEMA	PISTON TIENE POCA FUERZA	NO REALIZA OPERACIÓN DE CORTE	NIVE DE ACEITE BAJO	INSPECCION VISUAL / MANT. PREVEN.	5	8	3	120

NOMBRE DE EQUI	PO: CORTADORA DE 1	TUBOS (TRONZADOR	A MARCA FAT)	ELABORADO POR:	N° DE PAG. 6 DE 7	١	۱° D	E Al	MEF:
	50			CARLOS ROJAS	FECHA: ENERO 2018			01	
SISTEMA: ELECTRI	LU			CARLOS ROJAS	CONDICIONES ACTUALES				
ELEMENTO O					ACTIVIDADES				
PIEZA	FUNCIONAMIENTO	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	ACTUALES	D	G	0	NPF
ENVIA SEÑAL A BOTONERA DE MANDO CONTACTORES DE		NO HAY SEÑAL DE PULSO	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	5	8	4	160
	ARRANQUE	SE QUEDA PEGADO PULSADOR	FALLA EN EL ARRANQUE	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	5	8	4	160
CONTACTORES	INICIA EL COMANDO DEL ARRANQUE Y	BOBINA DESERGIZADA	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL / CORRECTIVOS	5	8	4	160
CONTACTORES ENCLAVAMIENT SISTEMA		NO ENCLAVA CONTACTOR	CONTACTOR SE RECALIENTA	CABLE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	8	7	224
CABLE ELECTRICO	CONDUCE ENERGIA ELECTRICA DEL SISTEMA DE ARRANQUE	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	CABLE SULFATADO	MANT. PREVENTIVO	3	8	5	120
		GENERA RUIDO ANOMALO	FALLA EN OPERACIÓN DE EQUIPO	DESGASTE DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		VIBRACION	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
MOTOR ELECTRICO	GENERA MOVIMIENTO PARA LA OPERACION DE EQUIPO	RECALENTAMIENTO	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		MOTOR SE DETIENE	SOBRECARGA DE MOTOR	DESGASTE DE PIEZAS MOVILES	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
		CARCASA HACE TIERRA	FALLA EN OPERACIÓN DE EQUIPO	CABLE SUELTO	INSPECCION VISUAL / CORRECTIVOS	4	7	3	84
RELE DE PROTECCION	PROTEGE DE SOBRECARGAS DE SISTEMA	NO CIERRA CIRCUITO	FALLA EN LA OPERACIÓN DEL EQUIPO	SUCIEDAD/CONTAMINACION	INSPECCION VISUAL	4	8	3	96

Cuadro de análisis de AMEF, donde D es detección; G es gravedad; O es ocurrencia y NPR es nivel de prioridad de riesgo.

NOMBRE DE EQUI	PO: CORTADORA DE TU	JBOS (TRONZADO	RA MARCA FAT)	ELABORADO POR:	N° DE PAG. 7 DE 7	N	l° D	ΕAΙ	MEF:
CICTERAA. BAECARU	160			CARLOCROLAC	FECHA: ENERO 2018 CONDICIONES AC		01 CTUALES		
SISTEMA: MECANI	ico			CARLOS ROJAS					
ELEMENTO O		MODO DE	EFECTO DE						
PIEZA	FUNCIONAMIENTO	FALLO	FALLO	CAUSAS DE FALLO	ACTIVIDADES ACTUALES	D	G	0	NP
PALANCA DE	ENCARGADO DEL MOVIMIENTO VERTICAL DEL	NO REALIZA FALLA EN OPERACIÓN		OXIDACION DE PIEZAS ACOPLADAS	INSPECCION VISUAL	4	8	7	224
OPERACIÓN	DISCO DE CORTE	MOVIMIENTO	DE EQUIPO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
SISTEMA REGULADOR	REGULA LA POSICION DE PRENSA DE AGARRE DE	VIBRACION EN LA	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
DE PRENSA	MATERIAL	OPERACIÓN	PERACION	OXIDACION DE PIEZAS ACOPLADAS	INSPECCION VISUAL	4	8	7	224
DISCO DE CORTE	REALIZA EL CORTE DE	NO CORTA MATERIAL	FALLA EN OPERACIÓN DE EQUIPO	SUCIEDAD/CONTAMINACION	MANT. PREVENTIVO	5	8	5	200
	MATERIAL		VIBRACION	MONTAJE INADECUADO	MANT. PREVENTIVO	5	8	5	200
				FUGA DE ACEITE	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
CAJA LUBRICADORA	CONDUCE EL ACEITE	NO LLEGA ACEITE REFIRGERANTE EN LA	DESGASTE PREMATURO DE	OBTRUCCION DEL FILTRO	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
	REFIRGERANTE	ZONA DE CORTE	DISCO DE CORTE	BOMBIN TAPONEADO	INSPECCION VISUAL / CORRECTIVOS	6	9	4	216
				DESGASTE DE SELLO DE CAJA	INSPECCION VISUAL / CORRECTIVOS	5	8	4	160
SISTEMA DE ARTICULACION DE CABEZAL DE CORTE	ENCARGADO DEL MOVIMIENTO HORIZONTAL DEL CABEZAL DE CORTE	OFRECE RESISTENCIA DE MOVIMIENTO	FALLA EN OPERACIÓN DE EQUIPO	OXIDACION DE PIEZAS ACOPLADAS	INSPECCION VISUAL / CORRECTIVOS	5	8	5	200

Cuadro de análisis de AMEF, donde D es detección; G es gravedad; O es ocurrencia y NPR es nivel de prioridad de riesgo.

3.1.7 Hojas de información del AMEF

Continuando con la técnica del AMEF se desarrolla las hojas de información de cada equipo las cuales nos dan los datos resumidos de las causas y modos de falla para mayor facilidad de interpretación por parte de los técnicos cuando requieran del historial de estas posibles fallas.

NOMBRE DE EQUIPO: GUILLOTINA	A HIDRAULICA MARCA WMW		
SISTEMA: MECANICO			
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	CAUSAS DE FALLO
CHINDDO HIDDALILICO	ENCARGADO DE ENTREGAR ENERGIA MECANICA A	AVANCE DE PISTON LENTO	AIRE EN EL SISTEMA HIDRAULICO
CILINDRO HIDRAULICO	SISTEMA	PISTON TIENE POCA FUERZA	NIVE DE ACEITE BAJO
CONMUNITO DUMON, DIFLAC	APTICULA EL MAQVINAJENTO DEL CUINDRO LURBALUCO	NO REALIZA ARTICULACION	PIEZAS DE MONTAJE SUELTO
CONJUNTO BULON- BIELAS	CONJUNTO BULON- BIELAS ARTICULA EL MOVIMIENTO DEL CILINDRO HIDRAUICO		DESGASTE DE PIEZAS ACOPLADAS
CONJUNTO BIELA DE TRANSMISION	ENCARGADA DE LA SUJECION DEL CUERDO PORTA DE CUCHILLAS	DESALINEAMIENTO	DESGASTE DE PIEZAS ACOPLADAS
DIELA TRIANCIJI AR DE ACCIONAMIENTO	ARTICULA EL MOVIMIENTO DEL CUERPO PORTA	NO REALIZA ARTICULACION	DESGASTE DE PIEZAS ACOPLADAS
BIELA TRIANGULAR DE ACCIONAMIENTO	CUCHILLAS	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS
BIELA RECTA	ENCARGADO DE LA UNION DE LAS PIEZAS PARA MOVIMIENTO DEL CUERPO PORTACUCHILLAS	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS
DODTA GUGUNUAG	ENCARCADO DE SUJECION VICENTRADO DE CUCUMA AS	DESALINEAMIENTO	PIEZAS DE MONTAJE SUELTO
PORTA CUCHILLAS	ENCARGADO DE SUJECION Y CENTRADO DE CUCHILLAS	CUCHILLAS SUELTAS	DESGASTE DE PIEZAS ACOPLADAS
REGULADORES DE CUICHILLA	VARILLAS ROSCADAS QUE PERMITEN REGULAR POSICION DE CUCHILLAS	SE TRABA AL MOMENTO DE REGULAR	DESGASTE DE PIEZAS ACOPLADAS
DICONADOREC	SUJETA LAS PIEZAS A CORTAR PARA EVITA QUE SE	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS
PISONADORES	MUEVA EN LA OPERACIÓN	NO SUJETA CON LA FUERZA NECESARIA	FALLA EN MONTAJE
CONMINTO DE TODE DE CIZAVA	DECLINATA LA LONGITUD DE CADDEDA DE LAS CUSUMAS	DESBALANCEO	DESGASTE DE PIEZAS ACOPLADAS
CONJUNTO DE TOPE DE CIZALLA	REGULA LA LONGITUD DE CARRERA DE LAS CUCHILLAS	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS

NOMBRE DE EQUIPO: GUILLOTINA	HIDRAULICA MARCA WMW			
SISTEMA: MECANICO				
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	CAUSAS DE FALLO	
CHINDRO HIDRALILICO	ENCARGADO DE ENTREGAR ENERGIA MECANICA A	AVANCE DE PISTON LENTO	AIRE EN EL SISTEMA HIDRAULICO	
CILINDRO HIDRAULICO	SISTEMA	PISTON TIENE POCA FUERZA	NIVE DE ACEITE BAJO	
CONJUNTO BULON- BIELAS	ARTICULA EL MOVIMIENTO DEL CILINDRO HIDRAUICO	NO REALIZA ARTICULACION	PIEZAS DE MONTAJE SUELTO	
CONJUNTO BOLON- BIELAS	ARTICULA EL MOVIMIENTO DEL CILINDRO HIDRAUICO	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
CONJUNTO BIELA DE TRANSMISION	ENCARGADA DE LA SUJECION DEL CUERDO PORTA DE CUCHILLAS	DESALINEAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	
BIELA TRIANGULAR DE ACCIONAMIENTO	ARTICULA EL MOVIMIENTO DEL CUERPO PORTA	NO REALIZA ARTICULACION	DESGASTE DE PIEZAS ACOPLADAS	
BILLA TRIANGULAR DE ACCIONAIVILENTO	CUCHILLAS	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
BIELA RECTA	ENCARGADO DE LA UNION DE LAS PIEZAS PARA MOVIMIENTO DEL CUERPO PORTACUCHILLAS	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
PORTA CUCHILLAS	ENCARGADO DE SUJECION Y CENTRADO DE CUCHILLAS	DESALINEAMIENTO	PIEZAS DE MONTAJE SUELTO	
PORTA COCHILLAS	ENCARGADO DE SUJECION Y CENTRADO DE COCHILLAS	CUCHILLAS SUELTAS	DESGASTE DE PIEZAS ACOPLADAS	
REGULADORES DE CUICHILLA	VARILLAS ROSCADAS QUE PERMITEN REGULAR POSICION DE CUCHILLAS	SE TRABA AL MOMENTO DE REGULAR	DESGASTE DE PIEZAS ACOPLADAS	
PISONADORES	SUJETA LAS PIEZAS A CORTAR PARA EVITA QUE SE	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
PISONADORES	MUEVA EN LA OPERACIÓN	NO SUJETA CON LA FUERZA NECESARIA	FALLA EN MONTAJE	
CONJUNTO DE TOPE DE CIZALLA	REGULA LA LONGITUD DE CARRERA DE LAS CUCHILLAS	DESBALANCEO	DESGASTE DE PIEZAS ACOPLADAS	
CONJUNTO DE TOPE DE CIZALLA	REGULA LA LONGITUD DE CARRERA DE LAS CUCHILLAS	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
SISTEMA: HIDRAULICO				
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	CAUSAS DE FALLO	
ELECTROVALVULA	DISTRIBUYE EL ACEITE DEL SISTEMA HACIA OS ACTUADORES	NO ABRE VALVULA	PRESION BAJA	
VALVULA LIMITADORA DE PRESION	REGULA LA PRESION DEL SISTEMA	DEMORA EN REGULACION	MUELLE DESGASTADO	
VALVULA DE SECUENCIA	BLOQUEA EL CIRCUITO A UNA PRESION ESTABLECIDA	PISTON NO REALIZA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
MANGUERA HIDRAULICA	TRANSPORTA EL FLUIDO HIDRAULICO	PISTON CON POCA FUERZA	DESGASTE DE PIEZAS ACOPLADAS	
BOMBA HIDRAULICA	IMPULSA EL ACEITE A TODO EL SISTEMA	GOPETEO ANORMAL EN EL FUNCIONAMIENTO	AIRE EN EL SISTEMA	
		FRICCION EN LA OPERACIÓN	EMPAQUES ROTOS	
CILINDRO HIDRAULICO	ENCARGADO DE ENTREGAR ENERGIA MECANICA A	AVANCE DE PISTON LENTO	AIRE EN EL SISTEMA HIDRAULICO	
CILINDRO FIDRACLICO	SISTEMA	PISTON TIENE POCA FUERZA	NIVE DE ACEITE BAJO	

NOMBRE DE EQUIPO: CIZA	ALLA MULTIPLE MARCA FICEP			
SISTEMA: ELECTRICO				
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	CAUSAS DE FALLO	
DOTONIEDA DE MANDO	ENLYA CEÑALA CONTACTORES DE ARRANOUE	NO HAY SEÑAL DE PULSO	SUCIEDAD/CONTAMINACION	
BOTONERA DE MANDO	ENVIA SEÑAL A CONTACTORES DE ARRANQUE	SE QUEDA PEGADO PULSADOR	SUCIEDAD/CONTAMINACION	
CONTACTORES	INICIA EL COMANDO DEL ARRANQUE Y ENCLAVAMIENTO DEL	BOBINA DESERGIZADA	SUCIEDAD/CONTAMINACION	
CONTACTORES	SISTEMA	NO ENCLAVA CONTACTOR	CABLE SUELTO	
CABLE ELECTRICO	CONDUCE ENERGIA ELECTRICA DEL SISTEMA DE ARRANQUE	SISTEMA ABIERTO	CABLE SULFATADO	
		GENERA RUIDO ANOMALO	DESGASTE DE PIEZAS MOVILES	
		VIBRACION	ROZAMIENTO DE PIEZAS MOVILES	
MOTOR ELECTRICO	GENERA MOVIMIENTO PARA LA OPERACION DE EQUIPO	RECALENTAMIENTO	ROZAMIENTO DE PIEZAS MOVILES	
		MOTOR SE DETIENE	DESGASTE DE PIEZAS MOVILES	
		CARCASA HACE TIERRA	CABLE SUELTO	
RELE DE PROTECCION	PROTEGE DE SOBRECARGAS DE SISTEMA	NO CIERRA CIRCUITO	SUCIEDAD/CONTAMINACION	
SISTEMA: MECANICO		1		
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	CAUSAS DE FALLO	
		FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
BIELA	REALIZA EL MOVIMIENTO DEL EJE PARA EL CORTE	NO OPERA CON FUERZA NECESARIA PARA EL CORTE	PIEZAS DE MONTAJE SUELTO	
MANIVELA	ENCARGADO DE GENERAR EL MOVIMIENTO VERTICAL EN LA BIELA	NO CONECTA CON LA BIELA	PIEZAS DE MONTAJE SUELTO	
WANIVELA	ENCARGADO DE GENERAR EL MOVIMIENTO VERTICAL EN LA BIELA	DESBALANCEO	FALLA EN MONTAJE	
VOLANTE MATRIZ	ACUMULA ENERGIA PARA EL PROCESO DE CORTE	DESBALANCEO	DESGASTE DE PIEZAS ACOPLADAS	
EMPRACHE MECANICO	ENCARCADO DE CONECTAR LA VOLANTE CON EL MANUVELA	GOLPE AL REALIZAR EL ACOPLE	DESGASTE DE PIEZAS ACOPLADAS	
EMBRAGUE MECANICO	ENCARGADO DE CONECTAR LA VOLANTE CON EL MANIVELA	NO REALIZA ACOPLE	PIEZAS DE MONTAJE SUELTO	
PALANCA DE OPERACIÓN	REALIZA LA CONEXION CON EL PIN DE EMBRAGUE	NO REALIZA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
PORTA CUCHILLAS	ENCARGADO DE SUJECION Y CENTRADO DE CUCHILLAS	DESALINEAMIENTO	PIEZAS DE MONTAJE SUELTO	
EJE DE TRANSMISION	ENCARGADO DE TRANSMITIR EL MOVIMIENTO DE LA VOLANTE MATRIZ	DESBALANCEO	DESGASTE DE PIEZAS ACOPLADAS	
BRAZOS METALICOS DE BIELA	SE ENCARGA DE REALIZAR EL GIRO DE LA BIELA	FRICCION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS	
FAJA DE TRANSMISION	CONECTA EL MOTOR CON LA VOLANTE MATRIZ	DESLIZAMIENTODE FAJA	FALLA EN MONTAJE	
PIN DE EMBRAGUE	GENERA EL CONTACTO PARA FUNCIONAMIENTO DE EMBRAGUE	NO CONECTA CON EMBRAGUE	DESGASTE DE PIEZAS ACOPLADAS	

NOMBRE DE EQUIPO: C	ORTADORA DE TUBOS (TRONZADORA MARCA FA	T)	
SISTEMA: ELECTRICO			
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	CAUSAS DE FALLO
DOTONEDA DE MANDO	BOTONERA DE MANDO ENVIA SEÑAL A CONTACTORES DE ARRANQUE		SUCIEDAD/CONTAMINACION
BOTONERA DE MANDO			SUCIEDAD/CONTAMINACION
CONTACTORES	INICIA EL COMANDO DEL ARRANQUE Y ENCLAVAMIENTO DEL	BOBINA DESERGIZADA	SUCIEDAD/CONTAMINACION
CONTACTORES	SISTEMA	NO ENCLAVA CONTACTOR	CABLE SUELTO
CABLE ELECTRICO	CONDUCE ENERGIA ELECTRICA DEL SISTEMA DE ARRANQUE	SISTEMA ABIERTO	CABLE SULFATADO
		GENERA RUIDO ANOMALO	DESGASTE DE PIEZAS MOVILES
		VIBRACION	ROZAMIENTO DE PIEZAS MOVILES
MOTOR ELECTRICO	GENERA MOVIMIENTO PARA LA OPERACION DE EQUIPO	MOTOR SE DETIENE	DESGASTE DE PIEZAS MOVILES
		RECALENTAMIENTO	ROZAMIENTO DE PIEZAS MOVILES
		CARCASA HACE TIERRA	CABLE SUELTO
RELE DE PROTECCION	PROTEGE DE SOBRECARGAS DE SISTEMA	NO CIERRA CIRCUITO	SUCIEDAD/CONTAMINACION

NOMBRE DE EQUIPO: CO	NOMBRE DE EQUIPO: CORTADORA DE TUBOS (TRONZADORA MARCA FAT)						
SISTEMA: MECANICO							
ELEMENTO O PIEZA	FUNCIONAMIENTO	MODO DE FALLO	CAUSAS DE FALLO				
PALANCA DE OPERACIÓN	ENCARCADO DEL MOVIMIENTO VERTICAL DEL DISCO DE CORTE	NO DEALIZA MOVIMIENTO	OXIDACION DE PIEZAS ACOPLADAS				
PALANCA DE OPERACION	ENCARGADO DEL MOVIMIENTO VERTICAL DEL DISCO DE CORTE	NO REALIZA MOVIMIENTO	DESGASTE DE PIEZAS ACOPLADAS				
REGULADOR DE PRENSA	REGULA LA POSICION DE PRENSA DE AGARRE DE MATERIAL	VIBRACION EN LA OPERACIÓN	DESGASTE DE PIEZAS ACOPLADAS				
REGULADOR DE PRENSA	REGULA LA POSICION DE PRENSA DE AGARNE DE MIATERIAL	VIBRACION EN LA OPERACION	OXIDACION DE PIEZAS ACOPLADAS				
DISCO DE CODTE	DEALIZA EL CODTE DE MATERIAL	NO CORTA MATERIAL	SUCIEDAD/CONTAMINACION				
DISCO DE CORTE	REALIZA EL CORTE DE MATERIAL	NO CORTA MATERIAL	MONTAJE INADECUADO				
			FUGA DE ACEITE				
CALALLIBRICADORA	COMPLICE EL ACEITE DEFIDEEDANTE	NO LLEGA ACEITE REFIRGERANTE EN LA ZONA DE	OBTRUCCION DEL FILTRO				
CAJA LUBRICADORA	CONDUCE EL ACEITE REFIRGERANTE	CORTE	BOMBIN TAPONEADO				
			DESGASTE DE SELLO DE CAJA				

3.1.8 Resultados del AMEF

Continuando se presenta los resultados de la clasificación de criticidad del AMEF de acuerdo a cada máquina:

NOMBRE DE EQUIPO: C	IZALLA MULTIPLE MARCA FICEP			
ELEMENTO O PIEZA	MODO DE FALLO	EFECTO DE FALLO	NPR	NIVEL CRITICIDAD
PIN DE EMBRAGUE	NO CONECTA CON EMBRAGUE	NO REALIZA OPERACIÓN DE CORTE	225	С
EMBRAGUE MECANICO	NO REALIZA ACOPLE	NO REALIZA OPERACIÓN DE CORTE	225	С
PORTA CUCHILLAS	DESALINEAMIENTO	CORTE DEFECTUOSO	224	С
CONTACTORES	NO ENCLAVA CONTACTOR	CONTACTOR SE RECALIENTA	224	С
BIELA	DESBALANCEO	VIBRACIONES	224	С
VOLANTE MATRIZ	DESBALANCEO	VIBRACIONES	216	С
MOTOR ELECTRICO	GENERA RUIDO ANOMALO	FALLA EN OPERACIÓN DE EQUIPO	216	С
MOTOR ELECTRICO	VIBRACION	FALLA EN OPERACIÓN DE EQUIPO	216	С
MOTOR ELECTRICO	RECALENTAMIENTO	FALLA EN OPERACIÓN DE EQUIPO	216	С
EMBRAGUE MECANICO	GOLPE AL REALIZAR EL ACOPLE	SOBRECALENTAMIENTO DE PIEZAS	216	С
BRAZOS METALICOS DE BIELA	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	216	С
BIELA	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	216	С
FAJA DE TRANSMISION	DESLIZAMIENTODE FAJA	REDUCCION DE FUERZA EN EL CORTE	200	С
EJE DE TRANSMISION	DESBALANCEO	VIBRACIONES	200	С
PALANCA DE OPERACIÓN	NO REALIZA OPERACIÓN	NO REALIZA OPERACIÓN DE CORTE	180	SC
MANIVELA	NO CONECTA CON LA BIELA	DEFORMACION DE ACOPLES	160	SC
CONTACTORES	BOBINA DESERGIZADA	NO ARRANCA EQUIPO	160	SC
BOTONERA DE MANDO	NO HAY SEÑAL DE PULSO	NO ARRANCA EQUIPO	160	SC
BOTONERA DE MANDO	SE QUEDA PEGADO PULSADOR	FALLA EN EL ARRANQUE	160	SC
CABLE ELECTRICO	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	120	NC
BIELA	NO OPERA CON FUERZA NECESARIA PARA EL CORTE	DEFORMACION	120	NC
RELE DE PROTECCION	NO CIERRA CIRCUITO	FALLA EN LA OPERACIÓN DEL EQUIPO	96	NC
MOTOR ELECTRICO	CARCASA HACE TIERRA	FALLA EN OPERACIÓN DE EQUIPO	84	NC

NOMBRE DE EQUIPO: GUILL	OTINA HIDRAULICA MARCA WM	W			
ELEMENTO O PIEZA	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	NP R	NIVEL CRITICIDAD
CILINDRO HIDRAULICO	AVANCE DE PISTON LENTO	CORTE DEFECTUOSO	AIRE EN EL SISTEMA HIDRAULICO	225	С
ELECTROVALVULA	NO ABRE VALVULA	NO REALIZA OPERACIÓN DE CORTE	PRESION BAJA	225	С
BOMBA HIDRAULICA	FRICCION EN LA OPERACIÓN	FUGA DE FLUIDO	EMPAQUES ROTOS	225	С
CILINDRO HIDRAULICO	AVANCE DE PISTON LENTO	CORTE DEFECTUOSO	AIRE EN EL SISTEMA HIDRAULICO	225	С
CONTACTORES	NO ENCLAVA CONTACTOR	CONTACTOR SE RECALIENTA	CABLE SUELTO	224	С
MOTOR ELECTRICO	GENERA RUIDO ANOMALO	FALLA EN OPERACIÓN DE EQUIPO	DESGASTE DE PIEZAS MOVILES	216	С
MOTOR ELECTRICO	VIBRACION	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	216	С
MOTOR ELECTRICO	RECALENTAMIENTO	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	216	С
CONJUNTO BULON- BIELAS	NO REALIZA ARTICULACION	NO REALIZA OPERACIÓN DE CORTE	PIEZAS DE MONTAJE SUELTO	216	С
CONJUNTO BIELA DE TRANSMISION	DESALINEAMIENTO	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	216	С
BIELA TRIANGULAR DE ACCIONAMIENTO	NO REALIZA ARTICULACION	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	216	С
PORTA CUCHILLAS	CUCHILLAS SUELTAS	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	216	С
PISONADORES	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	216	С
CONJUNTO DE TOPE DE CUCHILLAS	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	216	С
VALVULA LIMITADORA DE PRESION	DEMORA EN REGULACION	NO REALIZA OPERACIÓN DE CORTE	MUELLE DESGASTADO	216	С
VALVULA DE SECUENCIA	PISTON NO REALIZA OPERACIÓN	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	216	С
MANGUERA HIDRAULICA	PISTON CON POCA FUERZA	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	216	С
BOMBA HIDRAULICA	GOPETEO ANORMAL EN EL FUNCIONAMIENTO	FALLA EN LA OPERACIÓN	AIRE EN EL SISTEMA	216	С
VARIADOR DE FRECUENCIA	NO REGULA VELOCIDAD	SOBRECALENTAMIENTO	SUCIEDAD/CONTAMINACION	200	С
REGULADORES DE CUICHILLA	SE TRABA AL MOMENTO DE REGULAR	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	200	С
PISONADORES	NO SUJETA CON LA FUERZA NECESARIA	CORTE DEFECTUOSO	FALLA EN MONTAJE	200	С
CONJUNTO DE TOPE DE CIZALLA	DESBALANCEO	VIBRACIONES	DESGASTE DE PIEZAS ACOPLADAS	200	С
CONJUNTO BULON- BIELAS	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	180	SC

CONTACTORES	BOBINA DESERGIZADA	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	160	SC
BOTONERA DE MANDO	NO HAY SEÑAL DE PULSO	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	160	SC
BOTONERA DE MANDO	SE QUEDA PEGADO PULSADOR	FALLA EN EL ARRANQUE	SUCIEDAD/CONTAMINACION	160	SC
PORTA CUCHILLAS	DESALINEAMIENTO	CORTE DEFECTUOSO	PIEZAS DE MONTAJE SUELTO	160	SC
BIELA TRIANGULAR DE ACCIONAMIENTO	FRICCION EN LA OPERACIÓN	SOBRECALENTAMIENTO	DESGASTE DE PIEZAS ACOPLADAS	144	SC
VARIADOR DE FRECUENCIA	FALLA A TIERRA	CORTOCIRCUITO A TIERRA DE MOTOR	CABLE SULFATADO	128	SC
BIELA RECTA	FRICCION EN LA OPERACIÓN	NO REALIZA OPERACIÓN DE CORTE	DESGASTE DE PIEZAS ACOPLADAS	128	SC
CABLE ELECTRICO	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	CABLE SULFATADO	120	NC
CABLE ELECTRICO	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	CABLE SULFATADO	120	NC
CILINDRO HIDRAULICO	PISTON TIENE POCA FUERZA	NO REALIZA OPERACIÓN DE CORTE	NIVE DE ACEITE BAJO	120	NC
CILINDRO HIDRAULICO	PISTON TIENE POCA FUERZA	NO REALIZA OPERACIÓN DE CORTE	NIVE DE ACEITE BAJO	120	NC
RELAY DE REGURIDAD	NO CIERRA CIRCUITO	FALLA EN LA OPERACIÓN DEL EQUIPO	SUCIEDAD/CONTAMINACION	96	NC
MOTOR ELECTRICO	CARCASA HACE TIERRA	FALLA EN OPERACIÓN DE EQUIPO	CABLE SUELTO	84	NC

Cuadro de clasificación de AMEF donde C es crítico; SC es semicritico; NC no crítico.

ELEMENTO O PIEZA	MODO DE FALLO	EFECTO DE FALLO	CAUSAS DE FALLO	NPR	NIVEL CRITICIDAD
CONTACTORES	NO ENCLAVA CONTACTOR	CONTACTOR SE RECALIENTA	CABLE SUELTO	224	С
PALANCA DE OPERACIÓN	NO REALIZA MOVIMIENTO	FALLA EN OPERACIÓN DE EQUIPO	OXIDACION DE PIEZAS ACOPLADAS	224	С
SISTEMA REGULADOR DE PRENSA	VIBRACION EN LA OPERACIÓN	CORTE DEFECTUOSO	OXIDACION DE PIEZAS ACOPLADAS	224	С
MOTOR ELECTRICO	GENERA RUIDO ANOMALO	FALLA EN OPERACIÓN DE EQUIPO	DESGASTE DE PIEZAS MOVILES	216	С
MOTOR ELECTRICO	VIBRACION	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	216	С
MOTOR ELECTRICO	RECALENTAMIENTO	FALLA EN OPERACIÓN DE EQUIPO	ROZAMIENTO DE PIEZAS MOVILES	216	С
PALANCA DE OPERACIÓN	NO REALIZA MOVIMIENTO	FALLA EN OPERACIÓN DE EQUIPO	DESGASTE DE PIEZAS ACOPLADAS	216	С
REGULADOR DE PRENSA	VIBRACION EN LA OPERACIÓN	CORTE DEFECTUOSO	DESGASTE DE PIEZAS ACOPLADAS	216	С
CAJA LUBRICADORA	NO LLEGA ACEITE REFIRGERANTE EN LA ZONA DE CORTE	DESGASTE PREMATURO DE DISCO DE CORTE	FUGA DE ACEITE	216	С
CAJA LUBRICADORA	NO LLEGA ACEITE REFIRGERANTE EN LA ZONA DE CORTE	DESGASTE PREMATURO DE DISCO DE CORTE	OBTRUCCION DEL FILTRO	216	С
CAJA LUBRICADORA	NO LLEGA ACEITE REFIRGERANTE EN LA ZONA DE CORTE	DESGASTE PREMATURO DE DISCO DE CORTE	BOMBIN TAPONEADO	216	С
SIST. ARTICULACION DE CABEZAL DE CORTE	OFRECE RESISTENCIA DE MOVIMIENTO	FALLA EN OPERACIÓN DE EQUIPO	OXIDACION DE PIEZAS ACOPLADAS	200	С
DISCO DE CORTE	NO CORTA MATERIAL	VIBRACION	MONTAJE INADECUADO	200	С
BOTONERA DE MANDO	NO HAY SEÑAL DE PULSO	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	160	SC
BOTONERA DE MANDO	SE QUEDA PEGADO PULSADOR	FALLA EN EL ARRANQUE	SUCIEDAD/CONTAMINACION	160	SC
CONTACTORES	BOBINA DESERGIZADA	NO ARRANCA EQUIPO	SUCIEDAD/CONTAMINACION	160	SC
CAJA LUBRICADORA	NO LLEGA ACEITE REFIRGERANTE EN LA ZONA DE CORTE	DESGASTE PREMATURO DE DISCO DE CORTE	DESGASTE DE SELLO DE CAJA	160	SC
CABLE ELECTRICO	SISTEMA ABIERTO	FALLA EN EL ARRANQUE	CABLE SULFATADO	120	NC
RELE DE PROTECCION	NO CIERRA CIRCUITO	FALLA EN LA OPERACIÓN DEL EQUIPO	SUCIEDAD/CONTAMINACION	96	NC
MOTOR ELECTRICO	CARCASA HACE TIERRA	FALLA EN OPERACIÓN DE EQUIPO	CABLE SUELTO	84	NC

3.2 Resultados de la propuesta de solución del trabajo de suficiencia

De acuerdo con el análisis de los cuadros de AMEF, se realizó el plan de mantenimiento para cada equipo del área de corte de materia prima, estableciendo tareas de mantenimiento, frecuencia de tiempo de las actividades, técnico encargado de realizar la tarea y tiempo por cada actividad. Se definió un plan de mantenimiento por cada máquina del área de corte de materia prima.

EQUIPO: CIZALLA MULTIPLE MARCA FICEP				
TAREAS DE MANTENIMIENTO	FRECUENCIA	TECNICO	OPERANDO	HORAS HOMBRE
SISTEMA: ELECTRICO				
VERIFICAR ESTADO DE BOTONERA Y REALIZAR LIMPIEZA ; REALIZAR CAMBIO SI ES NECESARIO	1 SEMANA	ELECTRIC.	NO	0.5 HORA
VERIFICAR ESTADO DE CONTACTORES Y REALIZAR LIMPIEZA; REALIZAR CAMBIO SI ES NECESARIO	1 SEMANA	ELECTRIC.	NO	0.5 HORA
VERIFICAR ESTADO DE CABLES ELECTRICO	8 SEMANAS	ELECTRIC.	SI	1 HORA
VERIFICAR ESTADO DE MOTOR (RUIDO; VIBRACIONES; TEMPERATURA)	4 SEMANAS	ELECTRIC.	SI	1 HORA
VERIFICAR CONSUMO DE CORRIENTE DE MOTOR	1 SEMANA	ELECTRIC.	NO	0.5 HORA
VERIFICAR ESTADO DE RELES TERMICOS Y REALIZAR LIMPIEZA; REALIZAR CAMBIO SI ES NECESARIO	2 SEMANA	ELECTRIC.	NO	0.5 HORA

SISTEMA: MECANICO				
VERIFICAR ESTADO DE PIEZAS DE ACOPLE DE BIELA REALIZAR AJUSTE SI AMERITA	4 SEMANAS	MECANIC.	NO	1 HORA
VERIFICAR EMBRAGUE MECANICO; REAJUSTE DE ELEMENTOS ACOPLADOS	4 SEMANAS	MECANIC.	NO	1 HORA
VERIFICAR PERNOS DE SUJECION DE PORTA CUCHILLAS	2 SEMANAS	MECANIC.	NO	1 HORA
VERIFICAR ESTADO DE VOLANTE MATRIZ	2 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE FAJA DE TRANSMISION; REALIZAR CAMBIO SI ES NECESARIO	2 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DF PIN DE EMBRAGUE	2 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ARTICULACION DE PALANCA DE OPERACIÓN REAJUSTE DE PERNOS	1 SEMANA	MECANIC.	NO	0.5 HORA
VERIFICAR FUNCIONAMIENTO DE MANIVELA; REAJUSTE DE PIEZAS DE ACOPLE	4 SEMANAS	MECANIC.	NO	1 HORA
VERIFICAR ESTADO DE CUCHILLAS	1 SEMANA	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE CUERPO DE EQUIPO	4 SEMANAS	MECANIC.	NO	1 HORA

EQUIPO: GUILLOTINA HIDRAULICA MARCA WMW					
TAREA	FRECUENCIA	TECNICO	OPERANDO	HORAS HOMBRE	
SISTEMA: ELECTRICO					
VERIFICAR ESTADO DE BOTONERA Y REALIZAR LIMPIEZA ; REALIZAR CAMBIO SI ES NECESARIO	1 SEMANA	ELECTRIC.	NO	0.5 HORA	
VERIFICAR ESTADO DE CONTACTORES Y REALIZAR LIMPIEZA; REALIZAR CAMBIO SI ES NECESARIO	1 SEMANA	ELECTRIC.	NO	0.5 HORA	
VERIFICAR ESTADO DE CABLES ELECTRICO	8 SEMANAS	ELECTRIC.	SI	1 HORA	
VERIFICAR ESTADO DE MOTOR (RUIDO; VIBRACIONES; TEMPERATURA)	4 SEMANAS	ELECTRIC.	SI	1 HORA	
VERIFICAR CONSUMO DE CORRIENTE DE MOTOR	1 SEMANA	ELECTRIC.	SI	0.5 HORA	
VERIFICAR ESTADO DE RELES TERMICOS Y REALIZAR LIMPIEZA; REALIZAR CAMBIO SI ES NECESARIO	2 SEMANA	ELECTRIC.	NO	0.5 HORA	
VERIFICAR ESTADO DE VARIADOR DE FRECUENCIA	8 SEMANAS	ELECTRIC.	SI	0.5 HORA	
VERIFICAR ESTADO DE RELY DE PROTECCION	8 SEMANAS	ELECTRIC.	SI	0.5 HORA	

SISTEMA: HIDRAULICO				
VERIFICAR NIVEL SE ACEITE DEL SISTEMA ; REPONER ACEITE SI ES NECESARIO	8 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR BUEN FUNCIONAMIENTO DE ELECTROVALVULA	6 SEMANAS	MECANIC.	SI	0.5 HORA
VERIFICAR BUEN FUNCIONAMIENTO DE VALVULA DE SECUENCIA	6 SEMANAS	MECANIC.	SI	0.5 HORA
REALIZAR CALIBRACION DE VALVULA REGULADORA DE PRESION	8 SEMANAS	MECANIC.	NO	1 HORA
VERIFCAR ESTADO DE MAGUERAS HIDRAULICAS DEL SISTEMA	3 SEMANAS	MECANIC.	SI	1 HORA
VERIFICAR ESTADO DE CILINDRO HIDRAULICO; REALIZAR CAMBIO DE PIEZAS SI ES NECESARIO	4 SEMANAS	MECANIC.	NO	1 HORA
VERIFICAR ESTADO Y BUEN FUNCIONAMIENTO DE BOMBA HIDRAULICA	4 SEMANAS	MECANIC.	SI	1 HORA

SISTEMA: MECANICO				
VERIFICAR ESTADO DE PISONADORES	2 SEMANAS	MECANIC.	NO	1 HORA
VERIFICAR ESTADO DE CONJUNTO BULON BIELAS	4 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO PORTA CUCHILLAS	1 SEMANA	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE CUCHILLAS	2 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE CONJUNTO BIELA TRANSMISION	4 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE BIELAS TRANGULARES	2 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE REGULADORES DE CUCHILLAS	3 SEMANAS	MECANIC.	NO	1 HORA
VERIFICAR ESTADO DE CONJUNTO TOPE DE CUCHILLAS	3 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE MESA DE TRABAJO	1 SEMANA	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE FAJA DENTADA	2 SEMANAS	MECANIC.	NO	0.5 HORA

EQUIPO: CORTADORA DE TUBOS (TRONZADORA MARCA FAT)					
TAREA	FRECUENCIA	TECNICO	OPERANDO	HORAS HOMBRE	
SISTEMA: ELECTRICO					
VERIFICAR ESTADO DE BOTONERA Y REALIZAR LIMPIEZA ; REALIZAR CAMBIO SI ES NECESARIO	1 SEMANA	ELECTRIC.	NO	0.5 HORA	
VERIFICAR ESTADO DE CONTACTORES Y REALIZAR LIMPIEZA; REALIZAR CAMBIO SI ES NECESARIO	1 SEMANA	ELECTRIC.	NO	0.5 HORA	
VERIFICAR ESTADO DE CABLES ELECTRICO	8 SEMANAS	ELECTRIC.	SI	1 HORA	
VERIFICAR ESTADO DE MOTOR (RUIDO; VIBRACIONES; TEMPERATURA)	4 SEMANAS	ELECTRIC.	SI	1 HORA	
VERIFICAR CONSUMO DE CORRIENTE DE MOTOR	1 SEMANA	ELECTRIC.	NO	0.5 HORA	
VERIFICAR ESTADO DE RELES TERMICOS Y REALIZAR LIMPIEZA; REALIZAR CAMBIO SI ES NECESARIO	2 SEMANA	ELECTRIC.	NO	0.5 HORA	

SISTEMA: MECANICO				
VERIFICAR ESTADO Y BUEN FUNCIONAMIENTO DE CAJA LUBRICADORA	2 SEMANAS	MECANIC.	SI	1 HORA
VERIFICAR ESTADO DE MANGUERAS DE RECIRCULACION DE REFRIGERANTE	2 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO Y BUEN FUNCIONAMIENTO DE BOMBA DE IMPULSION DE REFRIGERANTE	2 SEMANAS	MECANIC.	SI	0.5 HORA
VERIFICAR ESTADO DE FILTRO DE REFRIGERANTE	2 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE PALANCA DE OPERACIÓN	1 SEMANA	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE REGULAR DE POSICION DE PRENSA	1 SEMANA	MECANIC.	NO	1 HORA
VERIFICAR ESTADO DE GUARDAS DE PROTECCION	3 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE MESA DE TRABAJO	4 SEMANAS	MECANIC.	NO	0.5 HORA
VERIFICAR ESTADO DE DISCO DE CORTE	1 SEMANA	MECANIC.	NO	0.5 HORA

Siguiendo con el esquema de solución propuesto se presenta el cuadro comparativo del promedio del número de paradas imprevistas de los equipos antes y después de la implementación del plan de mantenimiento en el área de corte de materia prima, estos datos son comparados con los primeros meses del año 2017, el cual se observa una significativa reducción, a pesar que se tiene paradas en el área estas no generan mucho tiempo y costos reducidos como se observara en el resumen de costos más adelante los cuales se pueden ir mejorando para lograr reducir al mínimo este número de paradas.

PROMEDIO DE NUMERO DE PARADAS DEL					
AREA DE CORTE DE MATERIA PRIMA					
2017 2018					
enero	8	3			
febrero	9	4			
marzo	8	3			
abril	7	2			

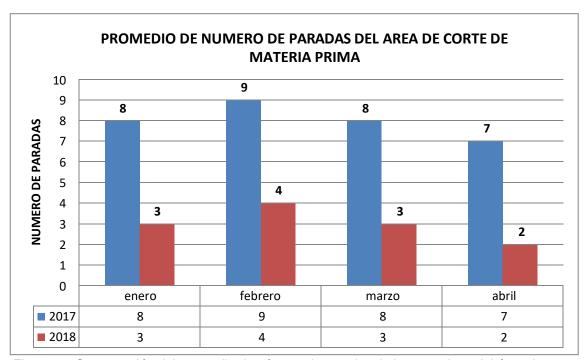


Figura 17: Comparación del promedio de número de paradas de las maquinas del área de corte de materia prima de los 4 primeros meses del año 2017. (Fuente: Elaboración propia con datos de la empresa El Detalle S.R.L.)

3.2.1 Calculo y análisis de parámetros de disponibilidad antes y después de la mejora del plan de mantenimiento en el área de corte de materia prima.

Para realizar el análisis de los parámetros de disponibilidad de las maquinas del área de corte de materia prima se utilizó los datos de la empresa los mismos que se usaron para realizar el análisis de la situación actual de todas las áreas de producción, las horas de operación por día es un promedio de uso de los equipos ya que la jornada laboral de la empresa es de 12 horas.

A continuación se utilizara las ecuaciones descritas en el capítulo II para el cálculo de los parámetros de cada máquina en un periodo de un mes antes de la propuesta del trabajo de suficiencia:

Cizalla múltiple

	HORAS DE OPER. POR DIA	HORAS MENSUALES DE OPERACIÓN	HORAS DE PARADAS NO PROGRAMADAS	NUMERO DE PARADAS
CIZALLA MULTIPLE	6	156	36	10

- Tiempo medio de reparación MTTR:

$$MTTR = \frac{\text{(total de horas deparadas)}}{\text{numero de averias}} \tag{1}$$

$$MTTR = \frac{36 \text{ horas}}{10}$$

$$MTTR = 3.6 horas$$

- Tiempo medio entre fallas MTBF:

$$MTBF = \frac{\text{(total de horas entre fallas)}}{\text{numero de averias}}$$
 (2)

$$MTBF = \frac{156 \text{ horas} - 36 \text{ horas}}{10}$$

$$MTBF = 12 \text{ horas}$$

- Disponibilidad de maquina:

$$D = \frac{\text{MTBF}}{(\text{MTBF} + \text{MTTR})} x 100$$

$$D = \frac{12 \text{ horas}}{(12 \text{ horas} + 3.6 \text{ horas})} x 100$$

$$D = 77 \%$$

• Guillotina hidráulica

	HORAS DE OPER. POR DIA	HORAS MENSUALES DE OPERACIÓN	HORAS DE PARADAS NO PROGRAMADAS	NUMERO DE PARADAS
GUILLOTINA HIDRAULICA	5	120	28	8

- Tiempo medio de reparación MTTR:

$$MTTR = \frac{\text{(total de horas deparadas)}}{\text{numero de averias}} \tag{1}$$

$$MTTR = \frac{28 \text{ horas}}{8}$$

$$MTTR = 3.5 horas$$

- Tiempo medio entre fallas MTBF:

$$MTBF = \frac{\text{(total de horas entre fallas)}}{\text{numero de averias}} \tag{2}$$

$$MTBF = \frac{120 \text{ horas} - 28 \text{ horas}}{8}$$
 $MTBF = 11.5 \text{ horas}$

- Disponibilidad de maquina:

$$D = \frac{\text{MTBF}}{\text{(MTBF+MTTR)}} x 100$$

$$D = \frac{11.5 \text{ horas}}{(11.5 \text{ horas} + 3.5 \text{ horas})} x 100$$

Cortadora de tubos

	HORAS DE OPER. POR DIA	HORAS MENSUALES DE OPERACIÓN	HORAS DE PARADAS NO PROGRAMADAS	NUMERO DE PARADAS
CORTADORA DE TUBOS	5	120	26	8

- Tiempo medio de reparación MTTR:

D = 77 %

$$MTTR = \frac{\text{(total de horas deparadas)}}{\text{numero de averias}} \tag{1}$$

$$MTTR = \frac{26 \text{ horas}}{8}$$

$$MTTR = 3.25 horas$$

- Tiempo medio entre fallas MTBF:

$$MTBF = \frac{\text{(total de horas entre fallas)}}{\text{numero de averias}} \tag{2}$$

$$MTBF = \frac{120 \text{ horas} - 26 \text{ horas}}{8}$$
 $MTBF = 11.75 \text{ horas}$

- Disponibilidad de maquina:

$$D = \frac{\text{MTBF}}{(\text{MTBF} + \text{MTTR})} x \ 100$$

$$D = \frac{11.75 \text{ horas}}{(11.75 \text{ horas} + 3.25 \text{ horas})} x \ 100$$

$$D = 78 \%$$

Resumen de los parámetros de disponibilidad de todos los equipos del área de corte de materia antes de la implementación de plan de manteamiento el cual se tiene un promedio de 30 horas de paras, se describen en la siguiente tabla:

Tabla 6: Parámetros de disponibilidad de equipos del área de corte de materia prima.

	HORAS DE OPER. POR DIA	HORAS MENSUALES DE OPERACIÓN	HORAS DE PARADAS NO PROGRAMADAS	NUMERO DE PARADAS	MTTR	MTBF	DISPONIBIIDAD
CIZALLA MULTIPLE	6	156	36	10	3.6	12	77%
GUILLOTINA HIDRAULICA	5	120	28	8	3.5	11.5	77%
CORTADORA DE TUBOS	5	120	26	8	3.25	11.75	78%

Resultado de los parámetros de disponibilidad antes del plan de mantenimiento.

Luego de implementar el plan de mantenimiento en el área de corte de materia prima se realizó el calculó y analizo los parámetros de disponibilidad en un periodo de un mes en los equipos, a continuación su desarrollo:

Cizalla múltiple

	HORAS DE		HORAS DE PARADAS NO	NUMERO DE
	OPER. POR DIA		PROGRAMADAS	PARADAS
CIZALLA MULTIPLE	6	156	6	4

- Tiempo medio de reparación MTTR:

$$MTTR = \frac{\text{(total de horas deparadas)}}{\text{numero de averias}} \tag{1}$$

$$MTTR = \frac{6 \text{ horas}}{4}$$

$$MTTR = 1,5 horas$$

- Tiempo medio entre fallas MTBF:

$$MTBF = \frac{\text{(total de horas entre fallas)}}{\text{numero de averias}} \tag{2}$$

$$MTBF = \frac{156 \text{ horas} - 6 \text{ horas}}{4}$$

$$MTBF = 37,5 horas$$

- Disponibilidad de maquina:

$$D = \frac{\text{MTBF}}{\text{(MTBF+MTTR)}} x \ 100 \tag{4}$$

$$D = \frac{37.5 \text{ horas}}{(37.5 \text{ horas} + 1.5 \text{ horas})} x \ 100$$
$$D = 96 \%$$

Guillotina hidráulica

	HORAS DE OPER. POR DIA	HORAS MENSUALES DE OPERACIÓN	HORAS DE PARADAS NO PROGRAMADAS	NUMERO DE PARADAS
GUILLOTINA HIDRAULICA	5	120	4	3

- Tiempo medio de reparación MTTR:

$$MTTR = \frac{\text{(total de horas deparadas)}}{\text{numero de averias}} \tag{1}$$

$$MTTR = \frac{4 \text{ horas}}{3}$$

$$MTTR = 1.33 horas$$

- Tiempo medio entre fallas MTBF:

$$MTBF = \frac{\text{(total de horas entre fallas)}}{\text{numero de averias}} \tag{2}$$

$$MTBF = \frac{120 \text{ horas} - 4 \text{ horas}}{3}$$

$$MTBF = 38.6 \text{ horas}$$

- Disponibilidad de maquina:

$$D = \frac{\text{MTBF}}{(\text{MTBF} + \text{MTTR})} x \ 100 \tag{4}$$

$$D = \frac{38.6 \text{ horas}}{(38.6 \text{ horas} + 1.33 \text{ horas})} x 100$$
$$D = 97 \%$$

Cortadora de tubos

	HORAS DE OPER. POR DIA	HORAS MENSUALES DE OPERACIÓN	HORAS DE PARADAS NO PROGRAMADAS	NUMERO DE PARADAS
CORTADORA DE TUBOS	5	120	4	3

- Tiempo medio de reparación MTTR:

$$MTTR = \frac{\text{(total de horas deparadas)}}{\text{numero de averias}} \tag{1}$$

$$MTTR = \frac{4 \text{ horas}}{3}$$

$$MTTR = 1.33 horas$$

- Tiempo medio entre fallas MTBF:

$$MTBF = \frac{\text{(total de horas entre fallas)}}{\text{numero de averias}} \tag{2}$$

$$MTBF = \frac{120 \text{ horas} - 4 \text{ horas}}{3}$$

$$MTBF = 38.6 \text{ horas}$$

- Disponibilidad de maquina:

$$D = \frac{\text{MTBF}}{(\text{MTBF} + \text{MTTR})} x \ 100$$

$$D = \frac{38.6 \text{ horas}}{(38.6 \text{ horas} + 1.33 \text{ horas})} x \ 100$$

$$D = 97 \%$$

Luego de implementar el plan de mantenimiento en el área de corte de materia prima se redujo significativamente las horas de paradas de los equipos el cual es un promedio de 4.5 horas y el número de paradas imprevistas, dando como resultado los siguientes valores de parámetros de disponibilidad:

Tabla7: Resultado de los parámetros de disponibilidad luego de la implementación del plan de mantenimiento.

	HORAS DE OPER. POR DIA	HORAS MENSUALES DE OPERACIÓN	HORAS DE PARADAS NO PROGRAMADAS	NUMERO DE PARADAS	MTTR	MTBF	DISPONIBIIDAD
CIZALLA MULTIPLE	6	156	6	4	1.5	37.5	96 %
GUILLOTINA HIDRAULICA	5	120	4	3	1.3333333	38.66667	97 %
CORTADORA DE TUBOS	5	120	4	3	1.3333333	38.66667	97 %

Datos obtenidos en un periodo de un mes de los equipos de área de corte de materia prima.

Con el cálculo y análisis que se desarrolló con los datos de los equipos en un periodo de un mes antes y después del pan de mantenimiento en el área de corte de materia prima se obtuvo que el porcentaje de disponibilidad de los equipos mejoro considerablemente gracias a la reducción del número y hora de paradas del área el cual se puede ver reflejado en la siguiente figura:

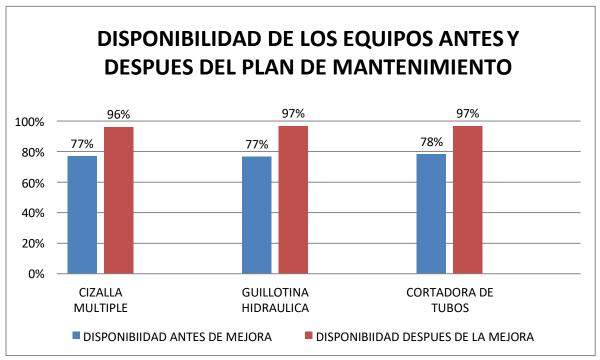


Figura 18: Comparación del porcentaje de disponibilidad de los equipos del área de corte de materia prima antes y después del plan de mantenimiento. (Fuente: Elaboracion propia con datos de la empresa El Detalle S.R.L.)

A continuación se presenta el cuadro comparativo de los gastos de mantenimiento correctivos en el área de corte de materia prima, teniendo en cuenta los mismos parámetros que se tomó en los datos de costos antes del plan de mantenimiento, el cual se puede concluir que con el plan de mantenimiento nos resultó beneficioso para la empresa ya que se ve reflejado una reducción considerable.

COSTO DE MANTENIMIENTO CORRECTIVO							
AREA DE CORTE DE MATERIA PRIMA							
AÑO 2018 AÑO 2017							
enero	S/.	1.200	S/.	3.800			
febrero	S/.	980	S/.	3.200			
marzo	S/.	1.150	S/.	3.500			
abril	S/.	930	S/.	3.470			

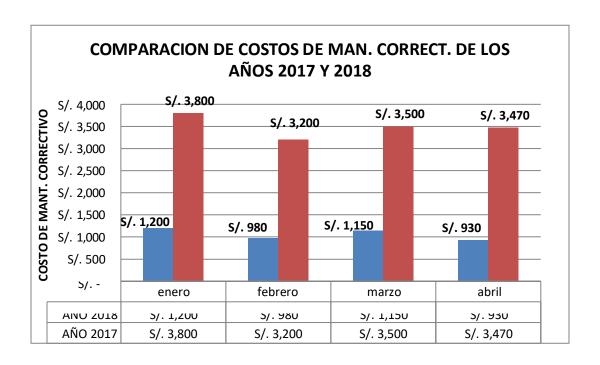


Figura 19: Comparación de los costos de mantenimiento correctivo en el área de corte de materia prima de los primeros meses de los años 2017 y 2018 (Fuente: elaboración propia con datos de la empresa El Detalle S.R.L.)

CONCLUSIONES

Luego de la implementación del plan de mantenimiento en el área de corte de materia prima de la empresa El Detalle S.R.L utilizando la técnica de mantenimiento AMEF se obtuvieron las siguientes conclusiones:

- De acuerdo al desarrollo de la técnica de AMEF la clasificación de criticidad según su
 NPR de las fallas en los equipos del área de corte se obtuvo lo siguiente:
 - Equipo guillotina hidráulica de 36 tipos de fallas resultaron 22 fallas críticas (61.1%), 8 fallas semicriticas (22.2%) y 6 fallas no críticas (16.6%).
 - Equipo cizalla múltiple de 23 tipos de falla resultaron 14 fallas críticas (60.8%), 5 fallas semicriticas (21.7%) y 4 fallas no críticas (17.4%).
 - Equipo cortador de tubos de 21 tipos de falla resultaron 14 fallas críticas (66.6%), 4 fallas semicriticas (19%) y 3 fallas no críticas (14.2%).

En base a la revisión del marco teórico y de los cálculos realizados en el presente trabajo se han obtenido resultados aceptables y reales, relacionados al contexto de la empresa metal mecánica El Detalle S.R.L. la misma que sustenta el objetivo general del presente trabajo.

• Con la implementación del plan de mantenimiento en el área de corte de materia prima se logró disminuir el promedio de las horas de paradas en los equipos de 30 horas hasta 4.5 horas. El promedio del número de paradas de los equipos se redujo de 8 paradas hasta 3 paradas. En base a los cálculos realizados en el presente trabajo se obtuvo estos resultados reales relacionados al contexto de la empresa metal mecánica El Detalle S.R.L. la misma que sustenta el objetivo general del presente trabajo.

- La disponibilidad de las maquinas del área de corte de materia prima en un periodo de un mes luego de implementar el plan de mantenimiento aumento según los siguientes resultados:
 - Cizalla múltiple de 77% aumento a 96%.
 - Guillotina hidráulica de 77% a 97%.
 - Cortadora de tubos de 78% a 97%.

En base a los cálculos realizados en el presente trabajo se obtuvo estos resultados reales relacionados al contexto de la empresa metal mecánica El Detalle S.R.L. la misma que sustenta el objetivo general del presente trabajo.

RECOMENDACIONES

De acuerdo con las conclusiones dadas se realizan las siguientes recomendaciones:

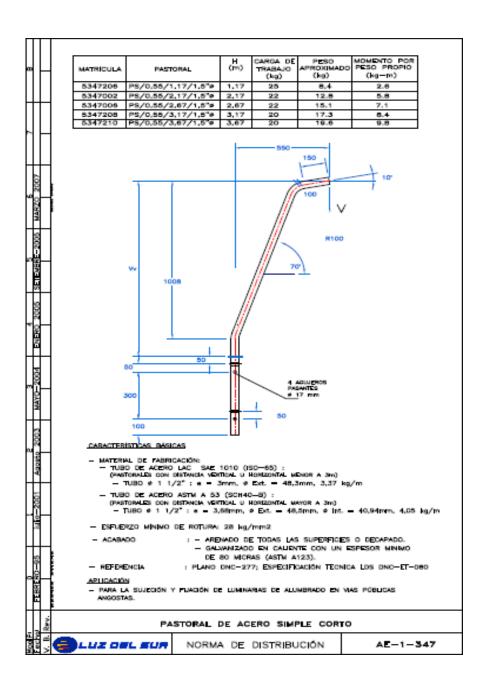
- Implementar planes de mantenimiento predictivo en base a los datos del presente trabajo de suficiencia, se puede empezar por realizar análisis vibracional y análisis de aceites, los cuales nos permitirán un mejor desempeño de las actividades de mantenimiento ya que nos indicaran datos exactos del estado de los sistemas de las máquinas.
- Para realizar una eficiente labor del área de mantenimiento se recomienda realizar esta técnica de mantenimiento AMEF en los equipos de las diferentes áreas de producción, como son las áreas de prensa, laminado, soldadura y acabado.
- Implementar un análisis de presupuestos de mantenimiento con referencias de las características obtenidas del plan de mantenimiento obtenido en el presente trabajo de suficiencia, en función a costos de repuestos utilizados en las frecuencias de las tareas establecidas. De esta manera de tendrá un control de datos históricos de repuestos y consumibles de acuerdo al nuevo plan de mantenimiento.
- Realizar auditorías periódicas en el área de mantenimiento con el propósito de identificar falencias en el área, para posteriormente realizar las correcciones necesarias.

BIBLIOGRAFIA

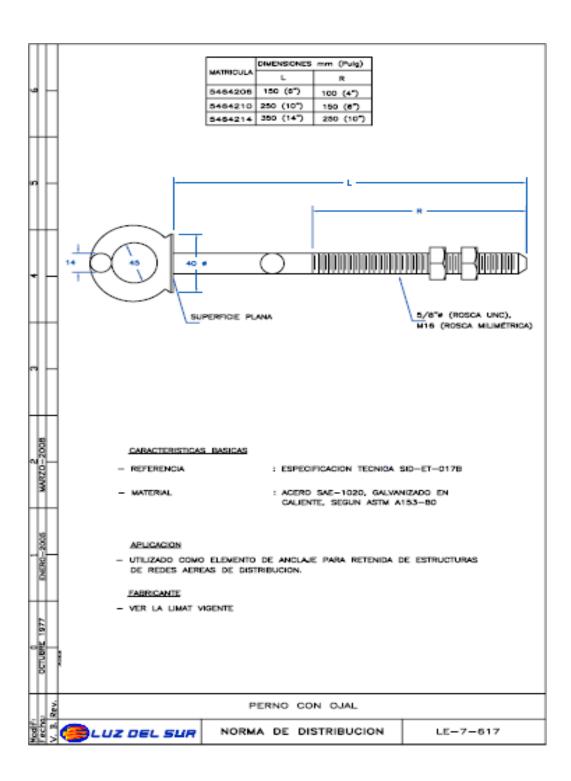
- Becerra, G. y Paulino, J. (2012). El análisis de confiabilidad como herramienta para optimizar la gestión de mantenimiento preventivo de los equipos de línea de flotación en un centro minero. Tesis de maestría, Universidad Nacional de Ingeniería, Lima, Perú.
- González, F. (2009). Teoría y Práctica del Mantenimiento Industrial Avanzado, 3°
 edición Madrid España, editorial: fundación Confimetal
- Da Costa, M. (2010). Aplicación del mantenimiento centrado en la confiabilidad a motores de gas de dos tiempos en pozos de alta producción. Tesis de grado, Pontificia Universidad Católica del Perú, Lima, Perú.
- Duffuaa. S. (2000). Sistemas de mantenimiento planeación y control, México D.F.:
 editorial Limusa wiley.
- Francisco, T. Sanchez, M. Perez, A. (2006). Mantenimiento mecánico de máquinas,
 castello de plana, editorial Universitat Jaime I.
- Mora, A. (2005). Mantenimiento estratégico para empresas industriales o de servicios, editorial AMG.
- Moubray, J. (2004). Mantenimiento centrado en confiabilidad, RCM II, Traducido por Ellman Suerios y Asociados. Buenos Aires, Argentina – Madrid, España.
 Edición en Español. USA
- Palomares, E (2015). Implementación del mantenimiento centrado en la confiabilidad (RCM) al sistema de izaje mineral, de la compañía minera "Milpo" unidad el porvenir. Tesis de maestría, Universidad Nacional de Ingeniería, Lima, Perú.

Torres, D. (2005). Mantenimiento su implementación y gestión, (2° edición),
 Córdova, Argentina: editorial Universitas,

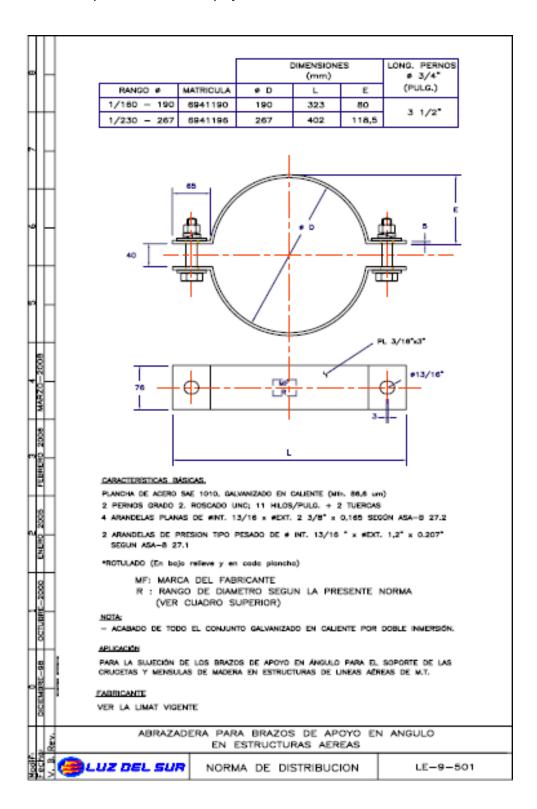
FUENTES BIBLIOGRAFICAS

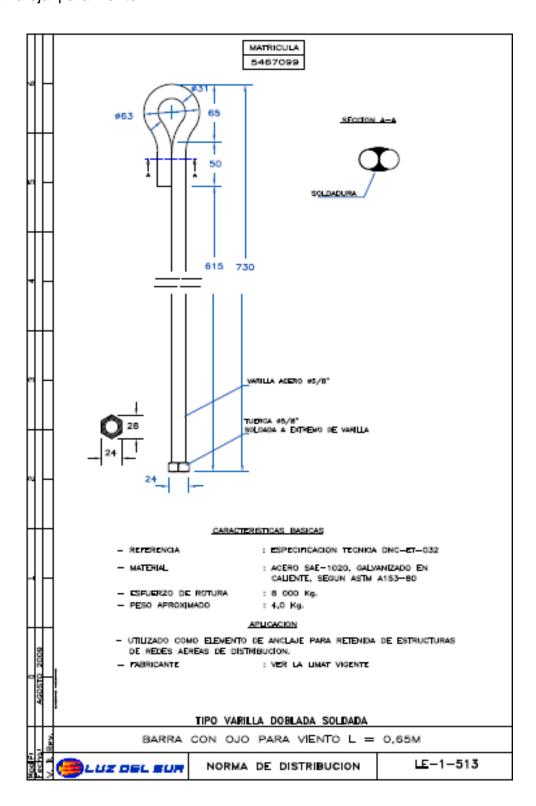

- Cárdenas, M. (2011). Diseño de un plan basado en RCM, para los equipos y vehículos de Dinacol S.A. Tesis de grado, Universidad Tecnológica de Bolívar, Cartagena, Colombia, encontrado el 13 de marzo de 2018 en: http://biblioteca.unitecnologica.edu.co/notas/tesis/0062776.pdf
- Figueroa, O. (2015). Definición de un plan de mantenimiento óptimo para equipos críticos de una planta de laminación. Tesis de grado, Universidad de Chile, Santiago de chile, Chile, encontrado el 13 de marzo de 2018 en:
 http://repositorio.uchile.cl/bitstream/handle/2250/132720/Definicion-de-plan-de-mantenimiento-optimo-para-equipos-criticos-de-una-planta... pdf?sequence=1

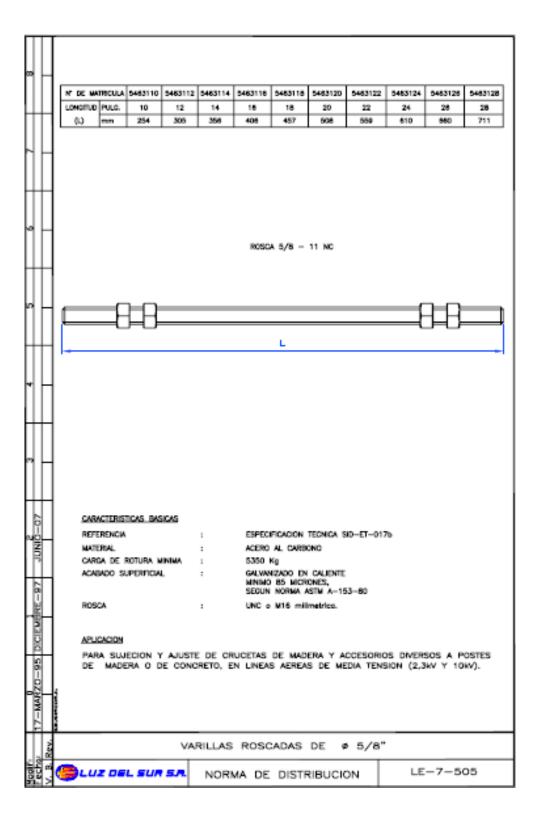
ANEXOS


ANEXO 1

PLANOS DE ALGUNOS PRODUCTOS FABRICADOS EN LA EMPRESA EL DETALLE S.R.L.


a) Pastoral de acero simple corto.


b) Perno con ojal.


c) Abrazadera para brazos de apoyo.

d) Barra ojal para viento.

e) Varilla roscada

ANEXO 2

IMÁGENES DE LOS EQUIPOS DEL ÁREA DE CORTE DE MATERIA PRIMA.

a) Guillotina hidráulica marca WMW.

b) Cizalla múltiple marca FICET.

c) Cortadora de tubos marca FAT

