NOMBRE DEL TRABAJO

AUTOR

"DISEÑO HIDRAULICO CON TUBERIAS D E POLIPROPILENO PARA SUMINISTRAR AGUA POTABLE EN EL CENTRO COMER CIA DAVID ALFONSO MEZA GUTIERREZ

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

17872 Words

78014 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

86 Pages

4.3MB

FECHA DE ENTREGA

FECHA DEL INFORME

Nov 30, 2023 11:21 AM GMT-5

Nov 30, 2023 11:22 AM GMT-5

• 11% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base o

- 11% Base de datos de Internet
- 2% Base de datos de publicaciones

• Base de datos de Crossref

- Base de datos de contenido publicado de Crossr
- 0% Base de datos de trabajos entregados

FORMULARIO DE AUTORIZACIÓN PARA LA PUBLICACIÓN DE TRABAJOS DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL DE LA UNTELS

(Art. 45° de la ley N° 30220 – Ley)

Autorización de la propiedad intelectual del autor para la publicación de tesis en el Repositorio Institucional de la Universidad Nacional Tecnológica de Lima Sur (https://repositorio.untels.edu.pe), de conformidad con el Decreto Legislativo N° 822, sobre la Ley de los Derechos de Autor, Ley N° 30035 del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, Art. 10° del Rgto. Nacional de Trabajos de Investigación para optar grados académicos y títulos profesionales en las universidades – RENATI Res. N° 084-2022-SUNEDU/CD, publicado en El Peruano el 16 de agosto de 2022; y la RCO N° 061-2023-UNTELS del 01 marzo 2023.

TIPO DE TRABAJO DE INVESTIGACIÓN

1). TESIS () 2). TRABAJO DE SUFICIENCIA PROFESIONAL (x)

DATOS PERSONALES

Apellidos y Nombres: MEZA GUTIERREZ DAVID ALFONSO
D.N.I.: 47978621
Otro Documento:
Nacionalidad: PERUANO
Teléfono: 964753166
e-mail: mezagutierrezd@gmail.com

DATOS ACADÉMICOS

Pregrado

= 1 9 2 W W W	
Facultad: FACULTAD DE INGENIERÍA Y GESTIÓN	
Programa Académico: TRABAJO DE SUFICIENCIA PROFESIONAL	
Título Profesional otorgado: INGENIERO MECÁNICO ELECTRICISTA	

Postgrado

Universidad de Procedencia:	
País:	
Grado Académico otorgado:	

Datos de trabajo de investigación

Título:

DISEÑO HIDRÁULICO CON TUBERÍAS DE POLIPROPILENO PARA SUMINISTRAR AGUA POTABLE EN EL CENTRO COMERCIAL MERCADERES

Fecha de Sustentación: 11 DE DICIEMBRE DE 2021

Calificación: APROBADO Año de Publicación: 2024

AUTORIZACIÓN DE PUBLICACIÓN EN VERSIÓN ELECTRÓNICA

A través de la presente, autorizo la publicación del texto completo de la tesis, en el Repositorio Institucional de la UNTELS especificando los siguientes términos:

ъ.	AT .			T 7		1	• /
Ν	/larcar	con	una	x	CII	$\boldsymbol{\rho}$	ección.
1.	raicai	COL	una	/ \	ou	U	cccion.

1)	Usted otorga una licencia especial para publicación de obras en el REPOSITORIO INSTITUCIONAL DE LA UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR.
	Si autorizo X No autorizo

2) Usted autoriza para que la obra sea puesta a disposición del público conservando los derechos de autor y para ello se elige el siguiente tipo de acceso.

	Derechos de autor				
TIPO DE ACCESO	ATRIBUCIONES DE ACCESO	ELECCIÓN			
ACCESO ABIERTO 12.1(*)	info:eu-repo/semantics/openAccess (Para documentos en acceso abierto)	(X)			

3) Si usted dispone de una **PATENTE** puede elegir el tipo de **ACCESO RESTRINGIDO** como derecho de autor y en el marco de confiabilidad dispuesto por los numerales 5.2 y 6.7 de la directiva N° 004-2016-CONCYTEC DEGC que regula el Repositorio Nacional Digital de CONCYTEC (Se colgará únicamente datos del autor y el resumen del trabajo de investigación).

Derechos de autor					
TIPO DE ACCESO	ATRIBUCIONES DE ACCESO	ELECCIÓN			
	info:eu-repo/semantics/restrictedAccess (Para documentos restringidos)	()			
ACCESO RESTRINGIDO	info:eu-repo/semantics/embargoedAccess (Para documentos con períodos de embargo. Se debe especificar las fechas de embargo)	()			
	info:eu-repo/semantics/closedAccess (para documentos confidenciales)	()			

^(*) http://renati.sunedu.gob.pe

Rellene la siguiente información si su trabajo de investigación es de acceso restringido:
Atribuciones de acceso restringido:
Motivos de la elección del acceso restringido:
MEZA GUTIERREZ DAVID ALFONSO
APELLIDOS Y NOMBRES
47978621
DNI
Firma y huella:

Lima, 19 de setiembre del 2023

UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR

FACULTAD DE INGENIERÍA Y GESTIÓN ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA Y ELÉCTRICA

"DISEÑO HIDRAULICO CON TUBERIAS DE POLIPROPILENO PARA SUMINISTRAR AGUA POTABLE EN EL CENTRO COMERCIAL MERCADERES"

TRABAJO DE SUFICIENCIA PROFESIONAL

Para optar el Título Profesional de

INGENIERO MECÁNICO ELECTRICISTA

PRESENTADO POR EL BACHILLER

MEZA GUTIERREZ, DAVID ALFONSO ORCID: 0009-0008-7108-1801

ASESOR

ROLANDO PAZ PURISACA ORCID: 0009-0004-2676-8285

Villa El Salvador 2021 "Año del Bicentenario del Perú: 200 años de Independencia"

V Programa de la Modalidad de Titulación por Trabajo de Suficiencia Profesional Facultad de Ingeniería y Gestión

ACTA DE SUSTENTACIÓN DE TRABAJO DE SUFICIENCIA PROFESIONAL PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO MECÁNICO ELECTRICISTA

En Villa El Salvador siendo las 16:00 horas del día sábado 11 de diciembre de 2021, y debido a la emergencia sanitaria y aislamiento social por el COVID-19, se reunieron en el Sala Virtual Nº 03 vía Google meet (meet.google.com/zxi-vshy-quv), los miembros del Jurado Evaluador del Trabajo de Suficiencia Profesional integrado por:

Presidente

: Dr. SANTOS MEJIA CESAR AUGUSTO

CIP N°71065

Secretario

: Mg. DAVILA IGNACIO CARLOS VIDAL

CIP N° 96353

Vocal

: Mg. PAEZ APOLINARIO ELISEO

CIP N°19569

Designados con RESOLUCIÓN DE FACULTAD DE INGENIERÍA Y GESTIÓN Nº 432-2021-UNTELS-CO-V.ACAD-FIG, de fecha 09 de diciembre de 2021.

Se da inició al acto público de sustentación y evaluación del Trabajo de Suficiencia Profesional, para obtener el Título Profesional de Ingeniero Mecánico Electricista, bajo la modalidad de Titulación por Trabajo de Suficiencia Profesional. (Resolución de Comisión Organizadora Nº 126-2021-UNTELS de fecha 06 de agosto de 2021, en la cual se APRUEBA el "Reglamento, Directiva, Cronograma y Presupuesto del V Programa de la Modalidad de Titulación por Trabajo de Suficiencia Profesional de la Universidad Nacional Tecnológica de Lima Sur", siendo que el Art. 4º del precitado Reglamento establece que: "La Modalidad de Titulación prevista consiste en la presentación, aprobación y sustentación de un Trabajo de Suficiencia Profesional que dé cuenta de la experiencia profesional y además permita demostrar el logro de las competencias adquiridas en el desarrollo de los estudios de pregrado que califican para el ejercicio de la profesión correspondiente. Quienes participen en esta modalidad no podrán tramitar simultáneamente otras modalidades de titulación. Además, los participantes inscritos en esta modalidad, deberán acreditar un mínimo de dos (02) años de experiencia laboral, de acuerdo a lo establecido en la Resolución Nº 174-2019- SUNEDU/CD y al anexo 1 sobre Glosario de Términos en el punto veinte (20)...", en el cual;

El bachiller: MEZA GUTIÉRREZ, DAVID ALFONSO

Sustentó su Trabajo de Suficiencia Profesional: **DISEÑO HIDRÁULICO CON TUBERÍAS DE POLIPROPILENO PARA SUMINISTRAR AGUA POTABLE EN EL CENTRO COMERCIAL MERCADERES.**

Concluida la Sustentación del Trabajo de Suficiencia Profesional, se procedió a la calificación correspondiente según el siguiente detalle:

Condición...APROBADO... con nota...14...

Equivalente...**BUENO**... De acuerdo al Art. 65° del Reglamento General para el Otorgamiento de Grado Académico y Título Profesional de la UNTELS vigente.

Siendo las 16:35 horas del día sábado 11 de diciembre de 2021, se dio por concluido el acto de sustentación del Trabajo de Suficiencia Profesional, firmando la presente Acta los miembros del Jurado.

SECRETARIO

Mg. DAVILA IGNACIO CARLOS VIDAL

96353

VOCAL

Mg. PAEZ APOLINARIO ELISEO

19569

PRESIDENTE
Dr. SANTOS MEJIA CESAR AUGUSTO
71065

DEDICATORIA

Está dedicado para el Dr. Álvaro Revilla Hernani, una gran persona que influencio mucho en mi formación profesional, que, con unos consejos, me hiso comprender lo que es vivir, gracias tío, hoy estas en la gloria, y en el recuerdo de todas aquellas personas que te quieren.

AGRADECIMIENTOS

Agradecido con Dios, por darnos la oportunidad de cada día de mostrar de lo que somos capaces. Agradecido con mi familia y enamorada por que mostraron un apoyo incondicional en mi formación profesional. Agradezco a mis compañeros y colegas de trabajo, que están ahí para darnos consejos que sumen a nuestra vida.

INDICE

DEDICATORIA	A	ii
AGRADECIMI	IENTOS	iii
		iv
LISTADO DE	FIGURAS	vi
LISTADO DE	TABLAS	vii
RESUMEN		. viii
INTRODUCCI	ÓN	1
CAPÍTULO I. A	ASPECTOS GENERALES	2
1.1. CON	TEXTO	2
1.2. DELII	MITACIÓN TEMPORAL	2
1.3. ESPA	ACIAL DEL TRABAJO	2
1.4. OBJE	ETIVOS	3
1.4.1. O	Dbjetivo 1	3
1.4.2. O	Dbjetivo 2	3
1.4.3. O	Dbjetivo 3	3
CAPÍTULO II.	MARCO TEÓRICO	4
2.1 ANTE	ECEDENTES	4
2.2. BASE	ES TEÓRICAS	5
2.2.1. N	létodo Hunter	5
2.2.2. R	led de distribución	6
2.2.3. D	Ootaciones	7
2.2.4. P	resión Hidrostática	8
2.2.5. E	cuación de continuidad	8
2.2.6. N	lúmero de Reynolds	9
2.2.7. F	lujo turbulento	9
2.2.8. F	lujo laminar	9
2.2.9. F	lujo hidráulicamente liso	9
2.2.10. E	cuación de Hazen Williams	10
2.2.11. E	cuaciones de Bernoulli y de la energía a flujo permanente de fluido	s 10
2.2.12. T	ubería de Polipropileno	11
2.2.13. T	écnicas de ensamblaje para las tuberías de polipropileno	13
2.2.14. T	ubería de Acero Inoxidable 316	14
2.2.15. B	Sombas centrifugas	16
2.2.16. L	ongitud equivalente por accesorio	17

2.3.	DEFINICÓN DE TÉRMINOS BÁSICOS18					
2.3.1	. Flujo18					
2.3.2	2. Fluido					
2.3.3	3. Hidráulica18					
2.3.4	. Tubería de Polipropileno18					
2.3.5	5. Bombas centrifugas18					
2.3.6	S. Perdida carga					
CAPÍTUI	O III: DESARROLLO DEL TRABAJO PROFESIONAL19					
3.1.	DETERMINACIÓN Y ANÁLISIS DEL PROBLEMA19					
3.2.	MODELO DE SOLUCIÓN PROPUESTO20					
3.2.1	. Almacenamiento20					
3.2.2	2. Máxima demanda simultánea22					
	ibución de la red de agua y el cálculo hidráulico para determinar la perdida					
3.2.4	arga por fricción23 Determinación de la altura dinámica total					
3.2.5						
	 Determinación de la capacidad de la bomba de impulsión37 RESULTADOS38 					
3.3.1						
3.3.2	P. C.					
3.3.3						
3.3.4						
3.3.5	Part					
	ISIONES					
	ENDACIONES					
	NCIAS BIBLIOGRÁFICAS43					
	.					
	N°1: Generalidades44					
	N°2: Máxima demanda simultanea de agua fría49					
	N°3: Calculo hidráulico de la red de agua potable63					
	N°4: Equipo de bombeo de agua potable71					
	NEXO N°5: Ficha técnica de tubería					
ANEXO	N°6: Ficha técnica de bomba77					

LISTADO DE FIGURAS

Figura N° 1: Gastos Probables para Aplicación del Método de Hunter	6
Figura N° 2: Rango de velocidades máximas para cálculo de tuberías	7
Figura N° 3: Diámetro de las tuberías de impulsión en función del gasto de	
bombeo	7
Figura N° 4: Tuberías horizontales	12
Figura N° 5: Tabla de distancias entre abrazaderas en centímetros	12
Figura N° 6: Tuberías verticales	12
Figura N° 7: Proceso de ensamblaje de tuberías de polipropileno	13
Figura N° 8: Cisterna de agua potable – Vista frontal de puntos insertados	20
Figura N° 9: Cisterna de agua potable – Vista planta	21
Figura N° 10: Planta – Nivel Sótano 2	23
Figura N° 11: Planta – Nivel Sótano 1	24
Figura N° 12: Planta – Nivel Piso 1	24
Figura N° 13: Planta – Nivel Piso 2	25
Figura N° 14: Planta – Nivel Piso 3	25
Figura N° 15: Planta – Nivel Piso 4	26
Figura N° 16: Planta – Nivel Piso 5	26
Figura N° 17: Planta – Nivel Piso 6	27
Figura N° 18: Planta – Nivel Piso 7	27
Figura N° 19: Planta – Nivel Piso 8	28
Figura N° 20: Planta – Nivel Piso 9	28
Figura N° 21: Planta – Nivel Piso 10	29
Figura N° 22: Esquema de Red de tubería	30
Figura N° 23: Hoja de Cálculo Hidráulico	31
Figura N° 24: Curva de la bomba centrifuga	40

LISTADO DE TABLAS

Tabla N° 1: Tabla de medidas de tuberías de polipropileno	. 11
Tabla N° 2: Tabla de medidas de tubería de Acero Inoxidable ASTM 316(L)	. 14
Tabla N° 3: Tabla de longitud equivalente por accesorios	. 17
Tabla N° 4: Válvula reductora de Presión N°01	. 34
Tabla N° 5: Válvula reductora de Presión N°02	. 34
Tabla N° 6: Válvula reductora de Presión N°03	. 35
Tabla N° 7: Válvula reductora de presión N°04	. 35
Tabla N° 8: Almacenamiento de agua potable	. 38
Tabla N° 9: Diámetro de tubería de impulsión	. 38
Tabla N° 10: Válvulas reductoras de presión	. 39
Tabla N° 11: Características de la bomba centrifuga	. 40

RESUMEN

En el diseño de los Proyectos Públicos o Privados hay que cumplir los estándares o normas vigentes para dar mayor confiabilidad en el diseño propuesto. En E.Y. Consultoría de Proyectos E.I.R.L. con RUC: 20604065337, realizamos la Ingeniería relacionadas a las Instalaciones Sanitarias, la cual en su desarrollo se realiza el *Diseño Hidráulico para el Suministro de Agua Potable* que se encarga de corroborar que las velocidades y presiones estén en el rango permitido según las normas vigentes.

Del mismo modo a base de los requerimientos del cliente el proyecto presenta sus propias dificultades las cuales nos hacen cuestionar, como realizar el diseño hidráulico para el Suministro de Agua Potable, como definir el material de la tubería y como se beneficia el proyecto con material de la tubería, por lo tanto se debe de plantear una metodología que involucra tomar como referencia proyectos similares anteriormente realizados en la empresa y también los antecedentes de las investigaciones, luego se realizará un método lógico deductivo mediante fórmulas y cálculos, los cuales en conjunto se analizará para cumplir los estándares y normas vigentes.

Se espera que el *Diseño Hidráulico para el Suministro de Agua Potable* muestre resultados dentro de los parámetros ya establecidos por los estándares y normas vigentes.

Se espera que el material de la tubería se defina por características geométricas de la edificación y referencia de proyectos anteriormente realizados. Se espera que los beneficios que obtenga el proyecto por usar este tipo de material de tubería sean similares a proyectos anteriormente ya ejecutados.

INTRODUCCIÓN

En el informe realizado se desea mostrar cómo realizar el *Diseño Hidráulico* para el Suministro de Agua Potable en diferentes proyectos.

En el Capítulo I, se menciona a la empresa privada EY Consultoría de Proyectos EIRL, quien realiza el proyecto de ingeniería y un contexto sobre el proyecto Centro Comercial Mercaderes, también se determinará los objetivos que tiene este informe.

En el Capítulo II, se realiza una investigación sobre tesis, libros, revistas, publicaciones, manuales y/o documentos que tiene relación al informe. Mostraremos los antecedentes de la investigación que ayudaran a sustentar, también se mostrara las bases teóricas y definiciones de términos, con las cuales se desarrollara el informe.

En el Capítulo III, se realiza la determinación y análisis del problema enfocado en los objetivos ya antes planteados, también se propone el modelo de metodología para desarrollar el diseño Hidráulico y a consecuencia de esta metodología, se mostrará los resultados que hagan valides al diseño propuesto para el proyecto Centro Comercial Mercaderes.

CAPÍTULO I. ASPECTOS GENERALES

1.1. CONTEXTO

EY Consultoría de Proyectos, brinda soluciones eficientes en el desarrollo y la elaboración de Proyectos de Construcción para Obras Públicas o Privadas, para todo tipo de rubro en las especialidades de Instalaciones Sanitarias, Sistema Contra Incendio, Instalaciones Eléctricas, Detección Contra Incendio y Corrientes Débiles. Está formado por un amplio grupo de técnicos con una amplia experiencia en el desarrollo de Proyectos de Ingeniería de diferentes especialidades, con la finalidad de obtener una calidad de nuestro servicio que cumpla y exceda los requerimientos de nuestros clientes.

1.2. DELIMITACIÓN TEMPORAL

El trabajo comprende en el periodo de agosto del 2021 a diciembre del 2021.

1.3. ESPACIAL DEL TRABAJO

El proyecto Centro Comercial Mercaderes, ubicado entre las avenidas Alfredo Benavides con Calle Mercaderes en Santiago de Surco, Lima-Perú, ha tenido el desarrollo de la ingeniería desde el 2020 a mediados del mes de julio como propuesta inicial el proyecto tenía 9 niveles de planta, y por modificaciones del cliente, se añaden 2 niveles más, el proyecto cierra con 11 niveles de planta, 2 niveles de sótano y 9 niveles de piso, y al observar altura geométrica del proyecto, se recomienda el uso de tubería de PPR para el Suministro de Agua Potable. La entrega del Proyecto Centro Comercial Mercaderes como ingeniería es en febrero del 2021.

1.4. OBJETIVOS

1.4.1. Objetivo 1

 Realizar el diseño Hidráulico para el Suministro de Agua Potable con Tuberías de Polipropileno.

1.4.2. Objetivo 2

 Determinar la capacidad de la bomba centrifuga para cubrir la demanda de agua requerida.

1.4.3. Objetivo 3

• Desarrollar el tendido de la red de tuberías para generar la menor cantidad de perdida de carga en la red.

CAPÍTULO II. MARCO TEÓRICO

2.1 ANTECEDENTES

Villafuerte Zosa, K. (2018) "Uso de tuberías de Policloruro de Vinilo en relación a tubería de Polipropileno en agua potable Universidad Peruana los Andes"

Esta investigación tiene como objetivo mostrar las limitaciones que tiene las tuberías de PVC a comparación de las tuberías de Polipropileno, tanto en los ámbitos técnicos y económicos. Se llega a concluir que existen limitaciones entre las tuberías de PVC y la de Polipropileno, siendo esta última quien lleva la ventaja en técnicas constructivas, resistencia, durabilidad, calidad y su larga vida útil.

Shuan Toledo, F. (2016) "Evaluación técnica y económica del sistema convencional (tubería de PVC) y el sistema de termofusión (tubería de Polipropileno) en instalaciones interiores de agua Potable para edificaciones en la ciudad de Huaraz, Ancash – Universidad Nacional Santiago Antúnez de Mayolo"

Esta investigación tiene como objetivo realizar la comparación técnica y económica entre tuberías de PVC y Polipropileno para instalaciones de agua potable en edificaciones. Se llega a concluir que por facilidades constructivas las tuberías de Polipropileno ofrecen mayores posibilidades de tiempo en su instalación, también presentan una mayor flexibilidad y resistencia las cuales le dan una vida útil de 50 años aproximadamente.

Hernández Murcia, D. (2018) "Modelación Física del Flujo Turbulento Hidráulicamente liso en Tuberías largas de polietileno – Universidad de los Andes Colombia"

Esta investigación tiene como objetivo hallar ecuaciones que se adapten al comportamiento del flujo en el diseño de distribución de agua potable aplicado en tubería de polietileno de diámetro 90 a 160mm. Se llega a concluir que las ecuaciones de Prantd y von Karman se ajustan a los

datos experimentales de la investigación como también la ecuación de Colebrook-White para regímenes turbulentos hidráulicamente lisos.

Páez Pedraza, J. (2013) "Modelación de flujo turbulento Hidráulicamente liso en tuberías largas de PVC – Universidad de los Andes Colombia"

Esta investigación tiene como objetivo determinar las perdidas por fricción y la rugosidad absoluta en tuberías de PVC con modelo físico de 76.79mt con uniones. Se llega a concluir que las ecuaciones usadas para obtener la rugosidad absoluta sean modificadas para obtener un análisis más apropiado de la rugosidad.

2.2. BASES TEÓRICAS

2.2.1. Método Hunter

Nos define el caudal máximo probable que depende de la eventualidad del uso de aparatos que están conectados a un mismo sistema de distribución de agua potable que en su peor eventualidad dichos aparatos pueden operar simultáneamente al mismo tiempo, los valores de los caudales son expresados por unidades de Hunter que se indica en la siguiente imagen:

Figura N° 1: Gastos Probables para Aplicación del Método de Hunter

N°		robable	N° de		robable	N° de	Gasto Proba-
de unidades	ranque	Válvula	unidades	ranque	Válvula	unidades	ble
3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 30 33 40 42 44 46	0,12 0,16 0,23 0,25 0,29 0,32 0,43 0,38 0,46 0,50 0,54 0,67 0,71 0,75 0,75 0,82 0,88 0,91 1,00 1,03	0,91 0,94 0,97 1,00 1,03 1,06 1,12 1,17 1,22 1,27 1,33 1,37 1,45 1,51 1,55 1,59 1,63 1,67 1,70 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74	120 130 140 150 160 170 180 200 210 220 230 240 250 260 270 280 290 300 320 340 380 400 420 440	1,83 1,91 1,98 2,04 2,22 2,37 2,45 2,60 2,65 2,75 2,84 2,99 3,07 3,15 2,99 3,07 3,15 3,37 3,52 3,67 3,83 3,97 4,27	2,72 2,80 2,85 2,95 3,12 3,20 3,25 3,36 3,51 3,58 3,65 3,79 3,87 3,94 4,04 4,12 4,35 4,46 4,60 4,72 4,84 4,96	1100 1200 1300 1400 1500 1600 1700 1800 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600	8,27 8,70 9,15 9,90 10,42 10,85 11,25 11,71 12,14 12,57 13,00 13,42 14,71 15,12 15,53 16,51 17,23 17,85 18,07 18,07 18,91
48 50 55 60 65	1,09 1,13 1,19 1,25 1,31	1,92 1,97 2,04 2,11 2,17	460 480 500 550 600	4,42 4,57 4,71 5,02 5,34	5,08 5,20 5,31 5,57 5,83	3700 3800 3900 4000	19,23 19,75 20,17 20,50
70 75 80 85 90 95 100 110	1,36 1,41 1,45 1,50 1,56 1,62 1,67 1,75	2,23 2,29 2,35 2,40 2,45 2,50 2,55 2,60	650 700 750 800 850 900 950 1000	5,85 5,95 6,20 6,60 6,91 7,22 7,53 7,84	6,09 6,35 6,61 6,84 7,11 7,36 7,61 7,85	PARA NUMER UNIDAD EST COLUM INDIFER QUE I APARA SEAN TANQUE VÁLV	RO DE ES DE TA NA ES RENTE LOS ATOS I DE E O DE

(Nota. Reglamento Nacional de Edificación (pág. 321163), por Ministerio de Vivienda, 2006, Instituto de la Construcción y Gerencia)

2.2.2. Red de distribución

De acuerdo a Reglamento Nacional de Edificación (RNE, 2006), el diseño hidráulico que se proponga en una edificación estará relacionado con el método Hunter (Método de Gasto Probables), como presión estática máxima 50mca, como presión mínima 2mca o en su defecto dependerá del tipo de grifería y sobre el cálculo del diámetro de la tubería debe de tener como velocidad mínima de 0.6m/s y velocidad máxima según la siguiente imagen:

Figura N° 2: Rango de velocidades máximas para cálculo de tuberías

Diámetro(mm)	Velocidad máxima(m/s)
15 (1/2")	1,90
20 (3/4")	2,20
25`(1")	2,48
32 (1 1/4")	2,85
40 y mayores (1 1/2" y mayores).	3,00

(*Nota. Reglamento Nacional de Edificación (*pág. 321156), por Ministerio de Vivienda, 2006, Instituto de la Construcción y Gerencia)

De acuerdo a Reglamento Nacional de Edificaciones (RNE, 2006), la máxima demanda simultanea define el diámetro de la tubería de impulsión, cuyos valores de muestran en la siguiente imagen.

Figura N° 3: Diámetro de las tuberías de impulsión en función del gasto de bombeo

Gasto de bombeo en L/s	Diámetro de la tubería de impulsión (mm)
Hasta 0,50	20 (3/4")
Hasta 1,00	25 (1")
Hasta 1,60	32 (1 1/4")
Hasta 3,00	40 (1 ½")
Hasta 5,00	50 (2")
Hasta 8,00	65 (2 ½")
Hasta 15,00	75 (3")
Hasta 25,00	100 (4")

(Nota. Reglamento Nacional de Edificación (pág. 321156), por Ministerio de Vivienda, 2006, Instituto de la Construcción y Gerencia)

2.2.3. Dotaciones

De acuerdo con Reglamento Nacional de Edificación (RNE, 2006), las dotaciones tienen la finalidad de estimar el volumen diario de consumo, los valores para oficinas y locales comerciales es de 6 l/día por cada m², almacenes es de 0.5l/día por cada m², sala de mesas (restaurantes y comidas rápidas) es de 40l/día por cada m², estacionamientos es de 2l/m² y áreas verdes es de 2 l/día por m².

2.2.4. Presión Hidrostática.

Según lo explicado por Streeter (1977), la presión hidrostática ocurre en un fluido en reposo, en otras palabras, el flujo tiene una aceleración de valor nula, donde se analiza la forma del recipiente ya que tiene variaciones horizontales y verticales donde este contenido el fluido para calcular la presión hidrostática.

De forma escalar, el valor de la presión hidrostática es equivalente a:

$$P_{hidroestatica} = \rho. g. h...(1)$$

Donde, ρ es la densidad del líquido a estudiar, g es el módulo de la gravedad, h es la altura geométrica vertical del recipiente del fluido.

Unidades de equivalencia de la Presión:

Donde, **mca** es metros en columna de agua, **PSI** en referencia al sistema inglés es libras por pulgadas cuadradas y bar hace referencia a 1000 **Pa** y el **Pa** es la fuerza ejercida por unidad de área.

2.2.5. Ecuación de continuidad

De acuerdo con Mott (2006) la ecuación de continuidad se basa en la conservación de masa que es un principio fundamental de la mecánica de fluidos, por el cual el fluido se debe conservar.

$$Q_{\text{final}} - Q_{\text{inicial}} = 0$$

$$Q_{\text{final}} = Q_{\text{inicial}} \dots (2)$$

Donde por un análisis dimensional y semejanza dinámica, el caudal **Q** expresado en m³/s es de magnitud escalar a:

$$Q_{caudal} = V_{flujo}. A_{seccion circular} ... (3)$$

Donde **A** es el área interna circular de la tubería expresado en m² y **V** es velocidad expresado en m/s.

2.2.6. Número de Reynolds

Según Mataix (1982) este es un valor adimensional generado por relación entre las fuerzas inerciales con respecto a las fuerzas viscosas de fluido, y define el tipo de flujo del fluido y está dada por la fórmula:

$$Re = \frac{V.D}{v}...(4)$$

Donde ${\bf V}$ es la velocidad expresada en m/s, ${\bf D}$ es el diámetro de la tubería (permanencia constante) expresado en m y ${\bf v}$ viscosidad cinemática m²/s.

2.2.7. Flujo turbulento

De acuerdo con Jimenes (2018), se manifiesta en fluidos con baja viscosidad de manera turbulenta o caótica, donde las trayectorias de las partículas describen pequeños remolinos no coordinados es decir su trayectoria es impredecible.

2.2.8. Flujo laminar

De acuerdo con Saldarriaga (2007), se manifiesta en fluidos con alta viscosidad de manera ordenada donde las fuerzas viscosas son más altas que las fuerzas inerciales

2.2.9. Flujo hidráulicamente liso

De acuerdo con Saldarriaga (2007), cuando la rugosidad media de la tubería es menor a la subcapa laminar viscosa del fluido ocurre en la pared interna de la tubería un flujo hidráulicamente liso.

2.2.10. Ecuación de Hazen Williams

Según lo explicado por Saldarriaga (2007), la ecuación de Hazen Williams es empírica para determinar la perdida por fricción en tuberías, para diámetros pequeños, que tiene similitud con las ecuaciones complejas de Darcy, la expresión está planteada en unidades del sistema internacional.

$$h_f = \frac{10.6715 \times Q^{1.851} \times l}{C_{HW}^{1.851} \times d^{4.869}}$$

Donde **V** es velocidad expresado en m/s con un régimen de flujo turbulento hidráulicamente rugoso, **I** es valor numérico en m de la suma de tramos en tuberías y accesorios del material, **C** es el coeficiente de rugosidad absoluta del material adimensional y **d** es el diámetro interno de la tubería.

Sin embargo, con fines aplicativos, cambiaremos a nuestro favor la fórmula de Hazen Williams realizando algunas modificaciones

$$h_f = \frac{10.6715 \times Q^{1.851} \times l}{C_{HW}^{1.851} \times d^{4.869}} ... (5)$$

Donde **Q** es caudal expresado en m³/s

Según el Manual Técnico de Poli fusión, se considera al coeficiente **C**=150 y para acero inoxidable **C**=120

2.2.11. Ecuaciones de Bernoulli y de la energía a flujo permanente de fluidos

Según lo explicado por Pérez (2003), la ecuación de Bernoulli se aplica en dos puntos diferentes de la trayectoria del flujo para hallar las pérdidas de fricción obtenidas por la rugosidad de la tubería En este caso la ecuación de Bernoulli, resultaría de la siguiente forma:

$$z_1 + \frac{V_1^2}{2g} + \frac{P_1}{\gamma} + hf_1 = z_2 + \frac{V_2^2}{2g} + \frac{P_2}{\gamma} + hf_2$$

$$P_1^{mca} = P_2^{mca} - \Delta h f_{1-2} - \Delta z_{2-1} ... (6)$$

2.2.12. Tubería de Polipropileno

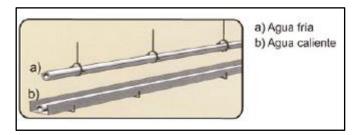
Según Polifusión S.A. (2010), estas tuberías de Polipropileno están diseñadas para la distribución diversos tipos de instalaciones, como calefacción e industrial, aire comprimido, sanitarias.

Además, tienen las siguientes características y beneficios:

- Posee vida útil aproximadamente de 50 años.
- Posee mayor resistencia de presiones y temperaturas.
- Mayor flexibilidad para el instalador.
- Resistencia elevada a la radiación solar.

Las siguientes tablas son datas en base a los catálogos de los proveedores y a partir de estos valores la empresa EY Consultoría de Proyectos hace el uso para sus respectivos cálculos.

Tabla N° 1: Tabla de medidas de tuberías de polipropileno


Diámetro (in)	Diámetro (mm)	Diámetro Interno (mm)
		SERIE 4 (PN12.5)
1/2	20	15.40
3/4	25	19.40
1	32	24.80
1 1/4	40	31.00
1 1/2	50	38.80
2	63	48.80
2 1/2	75	58.20
3	90	69.80
4	110	85.40
6	160	124.20

Nota. Esta tabla muestra los diámetros interiores de la tubería que se usan para el cálculo hidráulico, tomado de *POLIFUSION-BETA / Manual Técnico (pág. 28)*, por PÓLIFUSION S.A., 2010.

Según Polifusión S.A. (2010), en cuanto al soporte de las tuberías la distancia que tiene que ir entre los colgadores o abrazaderas está distribuida por su diámetro y su temperatura, además las tuberías deberán de fijarse mediante abrazaderas cuando estén verticales cada 3mt, las cuales llamaremos puntos fijos, se recomienda que

estén cercano a accesorios, y entre estos puntos fijos colocar abrazaderas deslizantes.

Figura N° 4: Tuberías horizontales

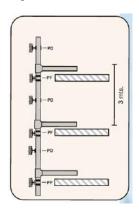
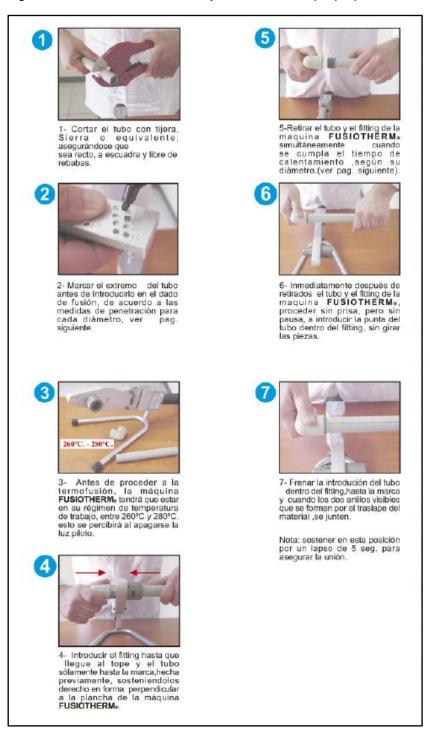

(Nota. POLIFUSION-BETA / Manual Técnico (pág. 12), PÓLIFUSION S.A., 2010.

Figura N° 5: Tabla de distancias entre abrazaderas en centímetros

d	TABLA DE DISTANCIAS ENTRE ABRAZADERAS EN CENTIMETROS						
mm	20°C	30°C	40°C	50°C	60°C	70°C	80°C
16	75	70	70	65	65	60	55
20	80	75	70	70	65	60	60
25	85	80	85	80	75	75	70
32	100	95	90	85	80	75	70
40	110	110	105	100	95	90	85
50	125	120	115	110	105	100	90
63	140	135	130	125	120	115	105
75	155	145	140	135	130	125	120
90	170	160	155	150	145	140	135
110	185	180	170	165	160	155	150
120	200	195	190	180	170	165	160

(Nota. POLIFUSION-BETA / Manual Técnico (pág. 12), PÓLIFUSION S.A., 2010)

Figura N° 6: Tuberías verticales



(Nota. POLIFUSION-BETA / Manual Técnico (pág. 12), PÓLIFUSION S.A., 2010.

2.2.13. Técnicas de ensamblaje para las tuberías de polipropileno

Según Polifusión S.A. (2010), recomienda seguir los siguientes pasos que muestra en su Manual Técnico.

Figura N° 7: Proceso de ensamblaje de tuberías de polipropileno

(Nota. POLIFUSION-BETA / Manual Técnico (pág. 20), PÓLIFUSION S.A., 2010.

2.2.14. Tubería de Acero Inoxidable 316

Este tipo de tubería está destinado para uso de industria de alimentos, industria química y farmacéutica como también a las instalaciones de agua potable. El acero inoxidable 316 tiene mayor resistencia a ácidos no oxidables y corrosión por picado.

Tabla N° 2: Tabla de medidas de tubería de Acero Inoxidable ASTM 316(L)

Diámetro (in)	Diámetro (mm)	Diámetro Interno (mm)		
		CEDULA 40		
1/2	21.30	15.76		
3/4	26.70	20.96		
1	33.04	26.64		
1 1/4	42.20	35.08		
1 1/2	48.30	40.94		
2	60.30	52.48		
2 1/2	73.00	62.68		
3	88.90	77.92		
4	114.30	102.26		
6	168.30	154.08		
8	219.10	202.74		
10	273.00	254.46		
12	323.80	303.18		

Nota. Esta tabla muestra los diámetros interiores de la tubería que se usan para el cálculo hidráulico, ver Anexo 6.

Por recomendación de la consultoría, los soportes serán ejecutados con perfiles galvanizados normalizados, sin uso y perfectamente alineados. Las soldaduras serán continuas y prolijas, no aceptándose costuras parciales o con escorias o gotas. Se ejecutarán todos los biseles requeridos para asegurar una correcta penetración del material de aporte. Todos los pernos y brocas complementarias serán de acero H-8.8 resistente y cincados o cadmiados. Los agujeros para anclajes o fijaciones serán hechos por punzonado, no aceptándose, cortes con soplete. Los soportes, a la finalización de su armado serán limpiados superficialmente, eliminando vestigios de grasas o escamas.

Lo pendolones y soportes de tubería deberán instalarse de manera que permitan la expansión y contracción de la misma. Además de su normal espaciamiento, deberán colocarse cerca de los accesorios de la tubería, válvulas y equipo pesado. Para eliminar la acción galvánica entre metales distintos se proveerán camisas de plástico entre la tubería y la suportación de la misma. Las tuberías verticales deberán ser soportadas con grampas de fierro, acero galvanizado o acero inoxidable, según se trate locales de servicio o locales limpios de producción tomada a la estructura o a las paredes. Se deberá proveer en las tuberías adyacentes y a cada lado de todos los anillos y juntas de expansión, guías de alineación aprobadas, fijadas en la forma que apruebe el director de Obra, a la estructura del edificio, a fin de controlar el movimiento de la tubería y mantenerla alineada. Se dimensionarán para soportar las tuberías llenas de agua con un factor de seguridad de cinco veces al de la resistencia a la rotura. Se instalarán de tal manera que la tubería no tenga pandeo o movimientos indebidos, y será separada del trabajo de otros gremios. Las abrazaderas y soportes para sujeción de tubería serán de varilla de acero al carbono laminado en caliente calidad comercial. La Separación entre soportes para tuberías hasta Ø4" será de hasta 2 metros, para diámetros mayores a Ø4" se considerará una separación de 1 m. Se usarán abrazaderas forjadas o ajustadas para líneas de más de ø 2" y hasta 300° F sin aislamiento y para líneas con aislamiento ø 1/2" o mayores. Los soportes incluirán: ménsulas de pared, grampas para tuberías verticales, rodillos, cunas para protección del aislamiento, cunas para tuberías, patines de fierro ángulo, etc., que sean necesarios para soportar y anclar las tuberías.

La fijación de soportes y anclajes al concreto será con:

 Elementos de empotrar de una sola pieza, de fierro fundido o acero forjado con anclaje de expansión, dentados con rosca interior y cono expansor. La fijación de anclajes y soportes a estructuras de fierro serán con abrazaderas para vigas doble T, fierro U, etc., aprobadas por la Supervisión.

- Los anclajes y soportes se instalarán fijándolos a estructuras de fierro, mampostería, u concreto pobre, pero no al concreto premoldeado, cubiertas de chapa metálicas, cielorrasos, tabiques u otras Tuberías sin autorización de la Supervisión.
- La instalación deberá ser hecha de tal forma que no restrinja la expansión y contracción de la tubería, y sea compatible con el total de la instalación de, y de manera segura y rígida de forma tal que se supriman esfuerzos indebidos y vibraciones, y además no interfiera con los trabajos de otros gremios.

2.2.15. Bombas centrifugas

Según Jimeno, este tipo de bombas es la más usada en Edificaciones, contiene un impulsor que al ser energizado imprime mayor velocidad al agua que entre por el ojo del impulsor, forzándolo a circular entre el mismo y la carcasa, hasta salir por el orificio de descarga, obteniendo un aumento de la energía en el agua a expensas del motor.

La potencia de la bomba se determina por:

$$Hp = \frac{Q \times H_t}{75 \times n} ... (7)$$

Además:

$$H_t = H_e + H_f + P_s \dots (8)$$

Donde:

Q: es el caudal en litros por segundo

H_t: es la perdida de carga total en mca.

n: eficiencia de la bomba (60% a 70%)

He: es la perdida de carga por elevación en mca.

Hf: es la perdida de carga por fricción en tuberías y accesorios.

Ps: es la presión de agua a la salida del tanque de la tubería de

impulsión (2 mca como mínimo)

2.2.16. Longitud equivalente por accesorio

Según Jimeno, la siguiente tabla muestra las longitudes equivalentes a perdida de carga localizada para cada accesorio.

Tabla N° 3: Tabla de longitud equivalente por accesorios

Diámetro (in)	Codo	Tee	Ensanchamiento	Reducción
1/2	0.500	1.000	0.331	0.200
3/4	0.700	1.400	0.484	0.200
1	0.800	1.700	0.636	0.300
1 1/4	1.100	2.300	0.814	0.400
1 1/2	1.300	2.800	0.967	0.500
2	1.700	3.500	1.273	0.700
2 1/2	2.000	4.300	1.604	0.900
3	2.500	5.200	1.909	1.100
4	3.400	6.700	2.545	1.600
6	4.900	10.000	3.818	2.500
8	6.400	13.000	3.818	3.500
10	7.900	16.000	3.818	4.500
12	9.500	19.000	3.818	5.500
14	10.500	22.000	3.818	6.200
Diámetro (in)	Válvula	Check Vertical	Check Horizontal	Canastilla
1/2	0.100	1.477	1.600	3.600
3/4	0.100	2.159	2.400	5.600
1	0.200	2.841	3.200	7.300
1 1/4	0.200	3.636	4.000	10.000
1 1/2	0.300	4.318	4.800	11.600
2	0.400	5.682	6.400	14.000
2 1/2	0.400	7.159	8.100	17.000
3	0.500	8.523	9.700	20.000
4	0.700	11.364	12.900	23.000
6	1.100	17.045	19.300	39.000
8	1.400	17.045	25.000	52.000
10	1.700	17.045	32.000	65.000
		1	22.222	70.000
12	2.100	17.045	38.000	78.000

Nota. Esta tabla muestra las Longitudes equivalentes a perdida de carga localizadas para los diferentes accesorios en el proyecto, tomado por *Instalaciones sanitarias* en edificaciones (pág. 313) Ing. Enrique Jimeno Blasco.

2.3. DEFINICÓN DE TÉRMINOS BÁSICOS

2.3.1. Flujo

Es el movimiento del fluido que están comprendidos por el contorno de un sólido.

2.3.2. Fluido

Es una sustancia que toma la forma del recipiente que lo contenga, además está en constante deformación debido a que no soporta fuerzas cortantes.

2.3.3. Hidráulica

Es el estudio del comportamiento del fluido en función a sus características físicas

2.3.4. Tubería de Polipropileno

Es una tubería de material termoplástico, que su método de unión es por termofusión, estas tuberías se caracterizan por tener un mayor espesor en la parte interna de la tubería.

2.3.5. Bombas centrifugas

Es una turbomáquina que hará impulsar el agua con una presión constante y velocidad variable dentro del recorrido de las tuberías.

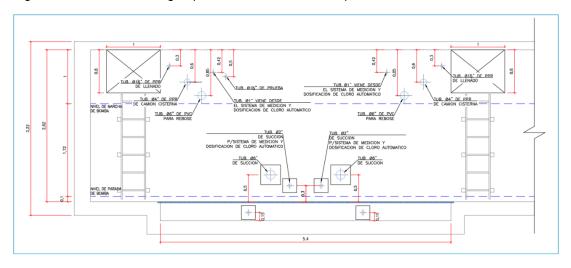
2.3.6. Perdida carga

Se entiende por perdida de carga, no solo la fricción que presenta la tubería distribuida vertical o horizontal, sino que se toma en cuenta los accesorios del diseño el cual, al momento de contabilizar, ambos suman un valor significativo el cual se debe de añadir a la capacidad de la bomba.

CAPÍTULO III: DESARROLLO DEL TRABAJO PROFESIONAL 3.1. DETERMINACIÓN Y ANÁLISIS DEL PROBLEMA

Se ha observado que, para el proyecto nuevo, por una necesidad de construcción, de requerir una distribución de redes de agua en su edificación.

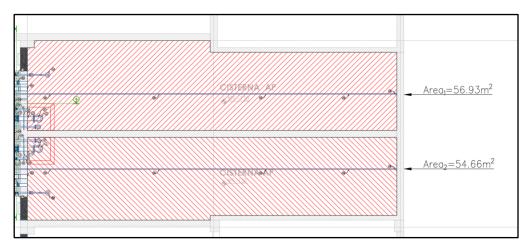
Por otro lado, para el proyecto, se ha observado que nuestra problemática es no cumplir los estándares vigentes por la normativa (RNE) para los parámetros del diseño hidráulico, y si no se realiza los respectivos cálculos y análisis, se puede presentar una sanción por normativa y/o corre riesgo de tener averías futuras que solo ocasionarían un mal servicio y pérdidas económicas, por lo tanto, se sugiere realizar el cálculo hidráulico para suministrar agua. Por otra parte, el no dimensionar la capacidad de la bomba, es no cumplir la presión que demanda el proyecto, implica que a futuro se puede presentar caída de presiones en lo más alejado geométricamente del proyecto como punto de consumo de agua, por lo tanto, se sugiere realizar el dimensionamiento de la bomba para cubrir la presión requerida del proyecto. Además, el no realizar el tendido de la red de tuberías considerando otras especialidades, es tener una red de tuberías sin tantas derivaciones, esta consideración es para tomar todas las derivaciones posibles (accesorios de tuberías), ya que entre más accesorios mayor es la capacidad de la bomba, por lo tanto, se siguiere ver dichas interferencias con otras especialidades para contabilizar los accesorios en la red principal de tubería.


3.2. MODELO DE SOLUCIÓN PROPUESTO

3.2.1. Almacenamiento

En el proyecto, el diseño del almacenamiento está bajo el criterio de RNE ISO.10, donde las dotaciones determinaran el volumen diario, su desarrollo se muestra en el Anexo 1, además como criterio se ha particionado la cisterna en dos cisternas independientes, con el fin de realizar el mantenimiento periódicamente, las cisternas independientes tendrán:

- Una distancia libre de 1 metro desde el techo hacia el piso, en este espacio se colocará una ventana de inspección para maniobrar la llegada del agua potable.
- Una distancia de 0.10 metro desde el piso a techo, en este espacio estará indicada la señal de parada de bomba.
- El espacio restante será la altura útil de la cisterna.
- La siguiente imagen muestra la distribución de los puntos insertados en la pared frontal de la cisterna.


Figura N° 8: Cisterna de agua potable – Vista frontal de puntos insertados

(Nota. Realizado por EY Consultoría de Proyectos E.I.R.L.)

La siguiente imagen nos muestra el área de almacenamiento de cada cisterna para que el producto de la altura útil y esta área nos determine la capacidad de almacenamiento.

Figura N° 9: Cisterna de agua potable – Vista planta

(Nota. Realizado por EY Consultoría de Proyectos E.I.R.L.)

De la figura 8 y 9, extraemos los siguientes datos

Cisterna 1:

Volutil=Autil x Area1

 $Vol_{util}=1.72 \times 56.93 \text{ m}^3$

Volutil=97.92 m³

Cisterna 2:

Volutil=Autil x Area1

 $Vol_{util}=1.72 \times 54.66 \text{ m}^3$

Volutil=94.02 m³

El volumen obtenido por las dotaciones que genera el proyecto es de:

Vol=93.08 m³ (Anexo 1)

Entonces, el volumen por cada cisterna será:

Vol=46.54 m³

Luego, se analiza para cada cisterna su factor de seguridad.

Cisterna N°1

 $FS_1 = (97.92/46.54) \times 100\%$

 $FS_1 = 210.4\%$

Cisterna N°2

 $FS_2 = (94.02/46.54) \times 100\%$

 $FS_2 = 210.4\%$

3.2.2. Máxima demanda simultánea

Se determina la máxima demanda simultanea utilizando lo indicado en la RNE IS.010, su desarrollo se muestra en el Anexo 2, el cual nos proporcionara las unidades de gasto para determinar el diámetro tuberías de impulsión.

De la estimación se obtiene.

Total, Unidades de Hunter= 2270 UH

Caudal de máxima demanda simultanea= 13.29lps

Ahora en la Figura N°3, nos muestra los rangos de gasto de bombeo con respecto al diámetro de la tubería, cuyo valor es:

Diámetrotubería=Ø4"

Sin embargo, por diseño de la consultoría, con referencias a otros proyectos y realizando el cálculo hidráulico, el diámetro debe de ser el inmediato superior comercialmente.

Diámetrotubería=Ø6"

Velocidadflujo= 1.09 m/s

Este valor se corrobora en el Anexo 3

3.2.3. Desarrollo de las proyecciones del tendido de tubería para la distribución de la red de agua y el cálculo hidráulico para determinar la perdida de carga por fricción

Se realiza las proyecciones de los tendidos de las tuberías de la red de agua y el cuarto de bomba para realizar el cálculo hidráulico.

En cada figura se mostrará el recorrido tomado en cuenta (línea azul) para desarrollar el cálculo hidráulico.

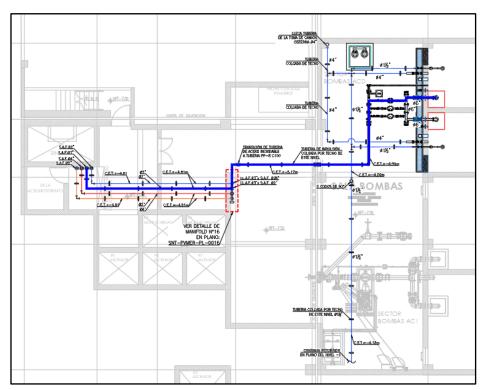


Figura N° 10: Planta – Nivel Sótano 2

(Nota. Línea de tubería está inicia en el tramo de succión y llega a la altura de techo y va colgada. Realizado por EY Consultoría de Proyectos E.I.R.L.)

CECAMO COMA O CO

Figura N° 11: Planta – Nivel Sótano 1

(Nota. Línea de tubería colgada del sótano 1 realizando un desplazamiento para subir verticalmente. Realizado por EY Consultoría de Proyectos E.I.R.L.)

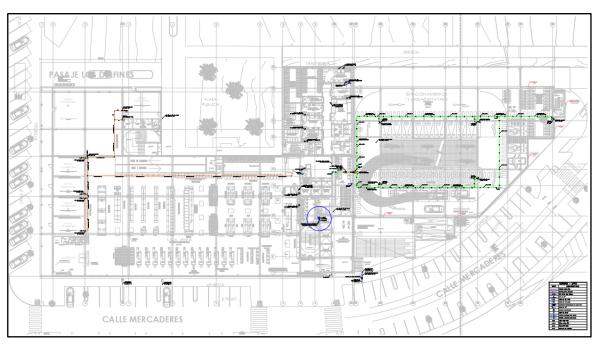
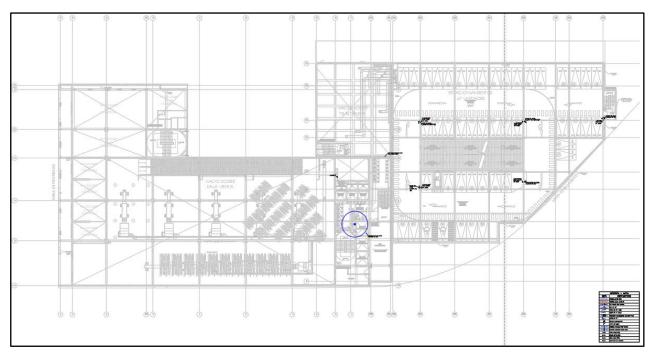



Figura N° 12: Planta – Nivel Piso 1

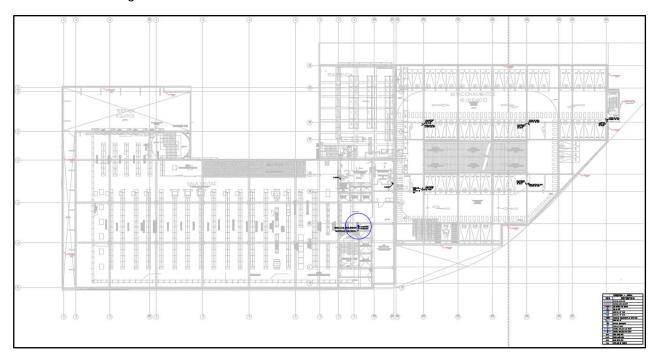

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 1 a piso 2. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 13: Planta – Nivel Piso 2

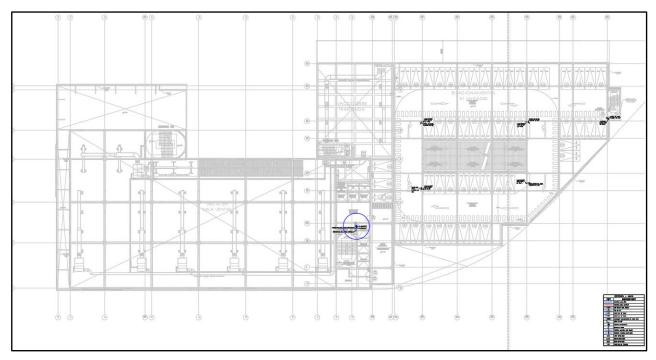

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 2 a piso 3. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 14: Planta – Nivel Piso 3

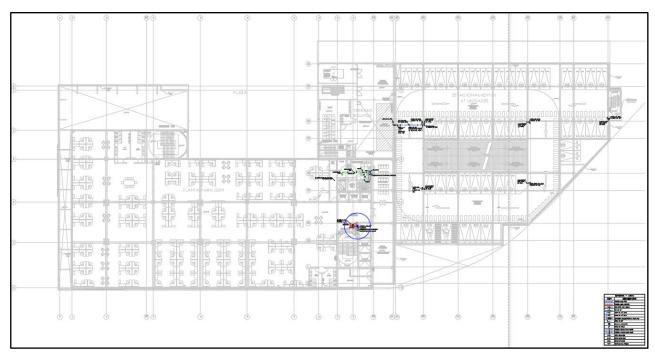

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 3 a piso 4. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 15: Planta – Nivel Piso 4

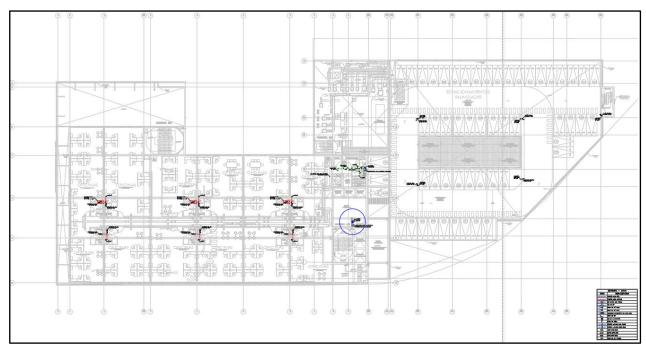

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 4 a piso 5. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 16: Planta – Nivel Piso 5

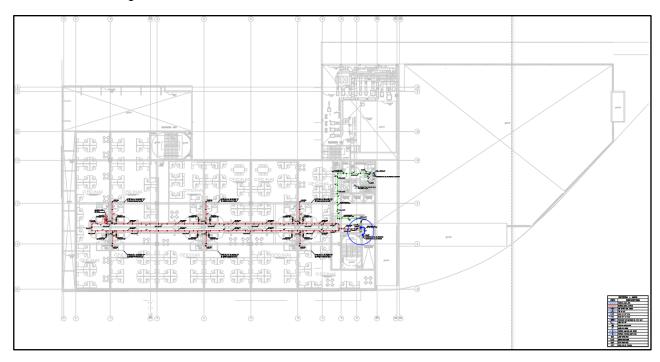

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 5 a piso 6. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 17: Planta – Nivel Piso 6

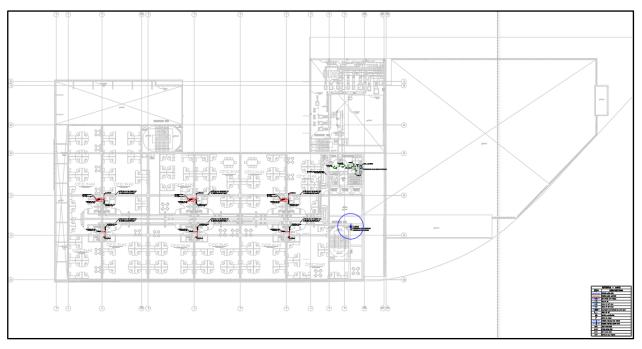

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 6 a piso 7. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 18: Planta – Nivel Piso 7

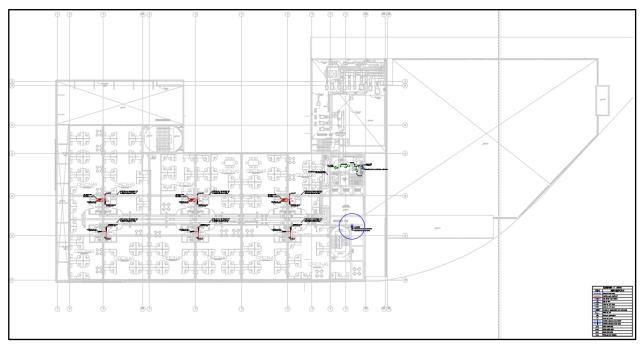

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 7 a techo, y luego un tramo horizontal para subir al piso 8. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 19: Planta – Nivel Piso 8

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 8 a piso 9. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Figura N° 20: Planta – Nivel Piso 9

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 9 a piso 10. Realizado por EY Consultoría de Proyectos E.I.R.L.)

THE STATE OF A STATE O

Figura N° 21: Planta - Nivel Piso 10

(Nota. La línea de tubería realiza un desplazamiento vertical de piso 10 a la altura de techo de este nivel. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Una vez obtenido el diseño del tendido de la tubería de la red de agua se realiza el cálculo hidráulico que toma como ambiente más desfavorable el nivel piso 10 hasta la transición de la tubería. En el cálculo hidráulico se estima la perdida de carga por de fricción de la tubería, la cual está desarrollada en el Anexo 3.

Se determinará las presiones y perdidas en un tramo de tubería, con las ecuaciones anteriormente mencionadas, y se mostrará mediante un ejemplo corto el modelo de solución propuesto. El método está a base de una hoja de cálculo la cual ya tiene insertada las tablas y ecuaciones que se usaran para realizar el cálculo hidráulico. En la siguiente imagen se muestra la distribución de la tubería y los requerimientos

PRESION_{REQUERIDA}: 40 PSI L=2.5m NIVEL 4: +7.00 NODO: A 8 NODO:A ø/4" NIVEL: +6.00 6 L=1m NIVEL 3: +5.00 NODO: B 4/10 2,00 NIVEL 2: +3.00 ø1½" L=1.5m ø1½" Bomba ø1½" NIVEL 1: ±0.00 L=2m

Figura N° 22: Esquema de Red de tubería

(Nota: Realizado por el autor)

En la *Figura 22* se desea saber, ¿cuánto es la perdida de carga que realiza el fluido a través de la tubería hidráulicamente lisa (Polipropileno), si el caudal requerido en el nodo A es 0.5l/s y en el nodo A' es 0.25L/s, también se desea saber cuánto es la presión en el nodo A'.

35.76 28.14 30.35 0.214 0.411 14.500 5.500 2.00 5.00 2.50 3.50 RECORRIDO PRINCIPAL DE LA RED DE TUBERIA 1.000 6.000 0 0 0 က 0.927 0.899 26.20 32.60 1 1/4 0.50 0.75 Nivel 4(+7.00) a Nivel 3(+5.00) Nivel 3(+5.00) a Nivel 0(+0.00) B-C 0

Figura N° 23: Hoja de Cálculo Hidráulico

Balance -17.01 40.00 PSI 43.15 PSI 50.84 PSI 49.18 PSI 50.84 PSI 35.76 34.60 0.164 0.16 0.62 ΈE 4.500 5 E Ltub. V 1.00 Ltub. H 2.00 Ε RECORRIDO AGUA POTABLE HACIA EL NODO A' 1.500 Lacc reduc. 0 val. tees 0 codo 7 0.765 > % 20.40 D int PERDIDAD DE CARGA EN EL TRAMO PRINCIPAL PERDIDAD DE CARGA EN EL TRAMO PRINCIPAL Dulg 3/4 0.25 တ <u>ဇ</u> Nivel (+6.00) a Nivel 3(+5.00) H.U TRAMO A-B

(Nota. Realizado por EY Consultoría de Proyectos E.I.R.L.)

En la hoja de Cálculo Hidráulico desarrollada por la empresa EY Consultoría de Proyectos EIRL, nos muestra lo siguiente:

En la primera columna-TRAMO, se designa los nodos A, B y C. donde se aplica el concepto de la ley de la continuidad.

Luego tenemos la columna U.H., es que la cantidad de unidades Hunter que se ha determinado en el Anexo 2. Estos valores van sumándose por cada nodo como unidades de hunter.

Luego tenemos la columna Q expresado en lps, que toma el valor convertido de la unidad hunter que se muestra en la Figura 1.

Luego tenemos la columna de D, que es el diámetro nominal de la tubería expresados en pulgadas, y también esta D_{int}, que es el diámetro interior de la tubería expresados en milímetros, estos valores se muestran en la Tabla 1.

Luego la columna de V, que es la velocidad obtenida al aplicar la ecuación 3:

$$Q_{caudal} = V_{flujo}.A_{seccion circular}...(3)$$

Luego tenemos la columna de L_{acc}, que es la contabilización de los accesorios en el tramo, como codos, tees, etc., estos valores se obtiene se muestran en la Tabla 3.

Luego tenemos la columna de L_{tub.Hort.}, que es la longitud de la tubería horizontal de nodo a nodo.

Luego tenemos la columna de L_{tub.Vert.}, que es la longitud de la tubería vertical de nodo a nodo.

Luego tenemos la columna L_t, que es la suma de las 3 columnas anteriores expresada en metros.

Luego tenemos la columna h_f, que es la perdida de carga obtenida al aplicar la ecuación 5:

$$h_{\rm f} = \frac{10.6715 \times Q^{1.851} \times l}{C_{\rm HW}^{1.851} \times d^{4.869}} \dots (5)$$

Luego tenemos la columna P, que es la presión expresada en mca obtenida por la ecuación 6:

$$P_1^{mca} = P_2^{mca} - \Delta h f_{1-2} - \Delta z_{2-1} ... (6)$$

Según la hoja de cálculo, la pérdida de carga del fluido es:

 $h_f = 0.80 \text{ m}$

y la presión en el nodo A' es:

P=34.60 mca

También se da la capacidad de la bomba centrifuga de presión constante y velocidad variable que impulsa debe de tener las siguientes características:

 $H_{dm} = \Delta Nivel + h_f$

 $H_{dm} = (7.00-0.00) + 0.62$

 $H_{dm} = 7.62 \ m$

Q=0.75 lps

Pestimada=0.13 Hp

Eficiencia n=60%

Ahora, aplicando el procedimiento mostrado para el proyecto se tiene los siguientes resultados a base del tramo (línea azul) más desfavorable ya mostrado en las proyecciones de las plantas.

Entonces el valor de la perdida de carga en el tramo más desfavorable es:

 $h_f = 11.66 \text{ mca}$

Además, al realizar el cálculo hidráulico, se observa que en ciertos niveles hay sobrepresiones que se deben de reducir, por lo tanto, el cálculo hidráulico desarrollando en el Anexo 3 muestra que deben de ver 4 válvulas reductoras de presión, para que el sistema funcione adecuadamente sin dañar las griferías u otro equipo que requiera punto de agua.

La primera válvula reductora de presión (VRP N°1), se da en el sótano 2, y la siguiente tabla muestra los valores:

Tabla N° 4: Válvula reductora de Presión N°01

VRP Nº01						
MCA PS						
Presión Entrada	69.48	98.76				
Presión Salida	40.51	57.58				

(Nota. Muestra las presiones de entra y salida expresados en mca como también en PSI. Realizado por el autor.)

La segunda válvula reductora de presión (VRP N°2), se da en el sótano 2, y la siguiente tabla muestra los valores:

Tabla N° 5: Válvula reductora de Presión N°02

VRP №02						
MCA PSI						
Presión Entrada	69.48	98.76				
Presión Salida 57.81 82.1						

(Nota. Muestra las presiones de entra y salida expresados en mca como también en PSI. Realizado por el autor.)

La tercera válvula reductora de presión (VRP N°3), se da en el piso 1 por el ambiente de estacionamiento, y la siguiente tabla muestra los valores:

Tabla N° 6: Válvula reductora de Presión N°03

VRP №03						
MCA PSI						
Presión Entrada	57.69	82.00				
Presión Salida 15.67 22.2						

(Nota. Muestra las presiones de entra y salida expresados en mca como también en PSI. Realizado por el autor.)

La cuarta válvula reductora de presión (VRP N°4), se da en el sótano 1 y la siguiente tabla muestra los valores:

Tabla N° 7: Válvula reductora de presión N°04

VRP Nº04						
MCA PSI						
Presión Entrada	62.42	88.73				
Presión Salida 32.66 46.43						

(Nota. Muestra las presiones de entra y salida expresados en mca como también en PSI. Realizado por el autor.)

3.2.4. Determinación de la altura dinámica total

Para determinar la altura dinámica total del proyecto se aplicará la ecuación 8.

$$H_t = H_e + H_f + P_s ... (8)$$

Para el valor de H_e se tomará la diferencia geométrica entre la cota del último y la cota de succión ubicada en el cuarto de bombas.

 $H_e = (+31.15 + 0.85 - (-7.50))$ mca

He = 39.50 mca

Para el valor de Ps se tomará el valor mínimo de presión que

es:

 $P_s = 21.11 \text{ mca}$

Para el valor de H_f se tomará el valor de la perdida de carga

por fricción total, tanto en la tubería de polipropileno como el de

acero inoxidable, por lo tanto, ya se ha obtenido el valor de la perdida

de carga en la tubería de polipropileno que se desarrolló en el Anexo

3, sin embargo, en el anexo 4 se muestra el desarrollo de la perdida

de carga por fricción en la tubería de acero inoxidable que toma el

valor de

H_{f1} = 7.29 mca (perdida de carga en tubería de acero inoxidable)

H_{f2} = 11.66 mca (perdida de carga en tubería de polipropileno)

 $H_f = (7.29 + 11.66) \text{ mca}$

 $H_f = 18.92 \text{ mca}$

Entonces el valor de la perdida de carga total es:

 $H_t = (39.50 + 18.92 + 21.11) \text{ mca}$

 $H_t = 79.53 \text{ mca}$

 $H_t = 80.00 \text{ mca (aprox.)}$

36

3.2.5. Determinación de la capacidad de la bomba de impulsión

Para determinar la capacidad de la bomba de impulsión hay que considerando la máxima demanda simultanea desarrollado en el Anexo 2 y el cálculo hidráulico desarrollado en el Anexo 3, estos valores se enlazaran para estimar la capacidad de la bomba

El desarrollo esta realizado en el Anexo 4, con estos valores ya obtenidos, se aplicará la ecuación 7, obteniendo el valor de potencia.

Q= 13.29 lps (caudal total)

Qc=13.50 lps (caudal comercial)

Además, se considera en el diseño 3 bombas, 2 bombas trabajando al 50% del caudal y 1 en reserva.

 Q_c =6.75 lps (caudal de cada bomba) H_t =80.00mca

n=60%

$$Hp = \frac{6.75 \times 80}{75 \times 0.6}$$

$$Hp = 12hp$$

3.3. RESULTADOS

3.3.1. Características de la cisterna

La siguiente tabla muestra las dimensiones y características de la cisterna.

Tabla N° 8: Almacenamiento de agua potable

ALMACENAMIENTO DE AGUA POTABLE							
	VOLUMEN TEORICO (m³)				FACTOR DE SEGURIDAD		
CISTERNA N°1	46.54	56.93	1.72	97.92	210.4%		
CISTERNA N°2	46.54	54.66	1.72	94.02	202.0%		

(Nota. Muestra los resultados obtenidos para las cisternas. Realizado por el autor.)

3.3.2. Características de la tubería de impulsión

La siguiente tabla muestra las características de la tubería de impulsión.

Tabla N° 9: Diámetro de tubería de impulsión

DIAMETRO DE TUBERIA DE IMPULSION						
	UNIDADES	CALIDAL	AUDAL VELOCIDAD	NORMA	CALCULO	
	HUNTER	CAUDAL	VELOCIDAD	IS.010	HIDRAULICO	
TUBERIA	2270 UH	13.29 lps	1.72 m/s	Ø4"	Ø6"	

(Nota. Muestra los resultados obtenidos para determinar el diámetro de la tubería de impulsión. Realizado por el autor.)

3.3.3. Estimación de la perdida de carga.

Según los resultados obtenidos del cálculo hidráulico desarrollados en el Anexo 3 la perdida de carga por fricción en tramo antes de la transición más desfavorable es:

 $h_f = 11.66 \text{ mca}$

A consecuencia del cálculo hidráulico se ha obtenido lo siguiente:

- VRP N°1: Ubicada en el sótano 2, en el alimentador de Agua de Plaza Vea.
- VRP N°2: Ubicada en el sótano 2, en el alimentador de Agua para los locales comerciales del piso 1.
- VRP N°3: Ubicada en el piso 1 en la zona de estacionamiento, ayudara a controlar la presión de los grifos en dicho ambiente.
- VRP N°4: Ubicada en el sótano 1 en la zona de estacionamiento, ayudara a controlar la presión de los SS.HH. del personal del edificio.

Tabla N° 10: Válvulas reductoras de presión

VÁLVULAS REDUCTORAS DE PRESION							
SISTEMA DE AGUA POTABLE							
V.R.P.	NIVEL	NIVEL (C) (puls) PRESION DE PRESION DE					
V.N.F.	MIVEL	Ø (pulg)	ENTRADA (m)	SALIDA (m)			
V.R.P. N°1	Sótano 2	3"	69.48	40.51			
V.R.P. N°2	Sótano 2	2"	69.48	57.81			
V.R.P. N°3 Sótano 1 2" 57.69 15.67							
V.R.P. N°4	Piso 1	2"	62.42	32.66			

(Nota. Muestra los resultados obtenidos para determinar el diámetro de la tubería de impulsión. Realizado por el autor.)

3.3.4. Estimación de la altura dinámica total

Según los resultados obtenidos en la determinación de la altura dinámica total, su valor es:

 $H_t = 80.00 \text{ mca (aprox.)}$

3.3.5. Características de la bomba de Impulsión.

Según las características del equipo de bombeo, utilizando las curvas de la línea de bombas de Salmson (Wilo) (ver Anexo 5), para el proyecto se utilizará un primer sistema de velocidad variable y presión constante, constituido por 3 electrobombas verticales, 2 en simultaneo y 1 en reserva, además donde el caudal de cada bomba representará el 50.00% del caudal total.

Tabla N° 11: Características de la bomba centrifuga

N.º de equipos (Bombas centrifugas)	3
Caudal de Bombeo Total (lps)	13.30
Numero de Bombas en simultaneo	2.00
Caudal c/Bomba (lps)	6.65
Altura dinámica total (m)	80.00
Potencia estimada (Hp)	11.90

(Nota. Realizado por EY Consultoría de Proyectos E.I.R.L.)

Q Imp. at MULTi-V

Figura N° 24: Curva de la bomba centrifuga

(Nota. Ficha técnica de Bombas centrifugas - Salmson.)

CONCLUSIONES

- Se realizo el Diseño Hidráulico para el Suministro de Agua Potable con tuberías de polipropileno, obteniendo en los resultados la capacidad de la cisterna indicada en la Tabla 8, el diámetro de la tubería de impulsión indicada en la Tabla 9 y la altura dinámica que nos da un valor de 80mca, dichos resultados están dentro de los parámetros de diseño.
- Se determinó la capacidad de la bomba centrifuga para la demanda de agua requerida, obteniendo en los resultados las características de la bomba indicada en la Tabla 11.
- Se desarrollo el tendido de la red de tuberías para generar la menor cantidad de pérdidas de carga en la red, obteniendo en los resultados la perdida de carga por fricción en las tuberías de polipropileno con un valor de 11.66mca, este valor esta desarrollado dentro los estándares y normas vigentes (Anexo 3).

RECOMENDACIONES

- Se recomienda antes de realizar el diseño hidráulico se tenga la información de las normas vigentes, del material de la tubería que se está proponiendo, el tipo de edificación para el sistema de distribución del agua potable, si será con varios alimentadores o un solo alimentador del cual empiece a distribuir a cada requerimiento y ser cuidadoso con los valores que se inserten en la hoja de cálculo.
- Se recomienda antes de determinar la capacidad de la bomba, tener la proyección en el cuarto de máquinas, el tendido de la red de tuberías y la perdida de carga en el tramo más desfavorable.
- Se recomienda que en el transcurrir del proyecto, se realice la comunicación entre especialidades, ya que no solo irá el tendido de la red de tuberías, sino también habrá otras redes de diferentes especialidades, esto implica colisiones en las proyecciones, y ha consecuencia se tendrá que desviar las tuberías con accesorios y esto provocaría más perdidas de lo que se ha proyectado, implicando que la bomba tenga una mayor capacidad.

REFERENCIAS BIBLIOGRÁFICAS

- Carlo J. C. (2018). *Mecánica de Fluidos: Viscosidad y Turbulencia*. Costa Rica. Repositorio del instituto Tecnológico de Costa Rica, pp. 18-19.
- Hernando L. P. (2003). *Determinación de la rugosidad absoluta en tubos de polipropileno*. Bogotá, Colombia: Repositorio de la Universidad de los Andes Colombia, pp. 4-5.
- Jimeno B. Enrique. *Instalaciones Sanitarias en edificaciones*. Capítulo de ingeniería sanitaria, departamento lima colegia de Ingenieros del Perú.
- Juan S. V. (2007). *Hidráulica de Tuberías, abastecimiento de agua, redes, riego.*Bogotá, Colombia: Alfaomega, pp. 19-153-156.
- Ministerio de Vivienda (2006). *Reglamento Nacional de Edificación*. Lima, Perú Instituto de la Construcción y Gerencia, pp 321156.
- Polifusión S.A.C. (2010). Manual beta Poli fusión Perú
- Robert L. Mott. (2006). Mecánica de fluidos. México: Pearson Educación, pp 154
- Víctor L. Streeter (1977). *Mecánica de Fluidos*. Bogotá, Colombia: Editorial Stella Claudio Mataix (1982). *Mecánica de Fluido y Maquinas Hidráulicas*, México: Alfaomega Grupo Editor, pp. 194-196.

ANEXOS

ANEXO N°1: Generalidades

GENERALIDADES

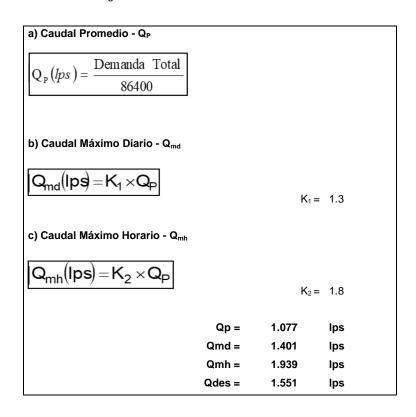
Los cálculos se centrarán en determinar los parámetros de diseño de los sistemas de agua potable y recolección de aguas residuales del Proyecto MERCADERES

En los cálculos se tomarán los valores de dotación de agua estipulado en la Reglamentación vigente para Instalaciones Sanitarias y otros valores se asumirán por similitud.

DEMANDA DE AGUA POTABLE

AMBIENTE	Área	% Área	DOTACIÓN		DEMANDA (I/día)
AMBIENTE	m2	Útil			DEMANDA (I/día)
- NIVEL -01 a (-3.96m)				,	
- Trastienda	221.50	100%	15	L/día/m2	3322.5
Cuarto de Controles	8.48	100%	6	L/día/m2	50.9
Cuarto de Mantenimiento	4.62	100%	0.5	L/día/m2	2.3
Lactario	10.60	100%	6	L/día/m2	63.6
Cto. de Aseo	8.11	100%	0.5	L/día/m2	4.1
Disponible 01	71.41	100%	0.5	L/día/m2	35.7
Sala de Basura	18.49	100%	0.5	L/día/m2	9.2
Controlador Recepción	9.55	100%	6	L/día/m2	57.3
Comedor	42.87	100%	6	L/día/m2	257.2
Pool de Oficinas	26.90	100%	6	L/día/m2	161.4
Sala de Oficinas	9.65	100%	6	L/día/m2	57.9
Disponible 02	10.12	100%	0.5	L/día/m2	5.1
Back Office	8.32	100%	6	L/día/m2	49.9
Estudio 01	42.00	Asientos	3	L/asiento/día	126.0
Estudio 02	42.00	Asientos	3	L/asiento/día	126.0
Estudio 03	42.00	Asientos	3	L/asiento/día	126.0
Recepción	53.47	100%	6	L/día/m2	320.8
Oficina Administrador	10.19	100%	6	L/día/m2	61.1
Sala de Basuras 02	17.93	100%	0.5	L/día/m2	9.0
Vestuarios para Trabajadores PV	30.00	Trabajadores	80	L/Trabajador/día	2400.0
Vestuarios para Trabajadores Edificio	20.00	Trabajadores	80	L/Trabajador/día	1600.0
NIVEL 01 a (+0.00m)					
Estacionamiento	300.00	100%	2	L/día/m2	600.0
Supermercado Plaza Vea					
Área de Ventas	1542.80	100%	6	L/día/m2	9256.8
Trastienda	320.70	100%	15	L/día/m2	4810.5
Local Comercial 01	363.46	100%	6	L/día/m2	2180.8
Local Comercial 02	31.08	100%	6	L/día/m2	186.5

Local Comercial 03	31.08	100%	6	L/día/m2	186.5
Local Comercial 04	31.08	100%	6	L/día/m2	186.5
Local Comercial 05	31.08	100%	6	L/día/m2	186.5
NIVEL 02 a (+3.10m)					
Disponible	22.17	100%	6	L/día/m2	133.0
Estacionamiento	650.00	100%	2	L/día/m2	1300.0
NIVEL 03 a (+6.20m)					
Disponible	20.40	100%	6	L/día/m2	122.4
Estacionamiento	637.50	100%	2	L/día/m2	1275.0
Supermercado Plaza Vea					
Área de Ventas	1778.45	100%	6	L/día/m2	10670.7
Almacén	330.53	100%	0.5	L/día/m2	165.3
Despacho Click & Collect	11.03	100%	6	L/día/m2	66.2
Almacén Ecommerce	31.31	100%	2	L/día/m2	62.6
Disponible	14.29	100%	6	L/día/m2	85.7
Disponible	47.30	100%	0.5	L/día/m2	23.7
NIVEL 04 a (+9.30m)					
Estacionamiento	675.00	100%	2	L/día/m2	1350.0
Disponible 01	45.90	100%	6	L/día/m2	275.4
Disponible 02	14.29	100%	6	L/día/m2	85.7
NIVEL 05 a (+12.40m)					
Estacionamiento	675.00	100%	2	L/día/m2	1350.0
Lactario	10.00	100%	6	L/día/m2	60.0
Cto. de Basura	9.30	100%	0.5	L/día/m2	4.7
Cto. de Limpieza	5.82	100%	0.5	L/día/m2	2.9
Oficina 01	111.73	100%	6	L/día/m2	670.4
Oficina 02	215.13	100%	6	L/día/m2	1290.8
Oficina 03	191.92	100%	6	L/día/m2	1151.5
Oficina 04	113.62	100%	6	L/día/m2	681.7
Oficina 05	177.89	100%	6	L/día/m2	1067.3
Oficina 06	229.62	100%	6	L/día/m2	1377.7
Oficina 07	265.76	100%	6	L/día/m2	1594.6
Oficina 08	233.85	100%	6	L/día/m2	1403.1
Disponible	1.98	100%	0.5	L/día/m2	1.0
NIVEL 06 a (+16.10m)					
Estacionamiento	675.00	100%	2	L/día/m2	1350.0
Lactario	10.00	100%	6	L/día/m2	60.0
Cto. de Basura	9.30	100%	0.5	L/día/m2	4.7
Cto. de Limpieza	5.82	100%	0.5	L/día/m2	2.9
Oficina 01	111.73	100%	6	L/día/m2	670.4
Oficina 02	141.65	100%	6	L/día/m2	849.9
Oficina 03	265.41	100%	6	L/día/m2	1592.5


0.01		1000/			
Oficina 04	113.62	100%	6	L/día/m2	681.7
Oficina 05	178.89	100%	6	L/día/m2	1073.3
Oficina 06	94.72	100%	6	L/día/m2	568.3
Oficina 07	130.58	100%	6	L/día/m2	783.5
Oficina 08	130.58	100%	6	L/día/m2	783.5
Oficina 09	130.58	100%	6	L/día/m2	783.5
Oficina 10	130.58	100%	6	L/día/m2	783.5
Oficina 11	99.01	100%	6	L/día/m2	594.1
Disponible	1.98	100%	0.5	L/día/m2	1.0
NIVEL 07 a (+19.85m)					
Lactario	10.00	100%	6	L/día/m2	60.0
Cto. de Basura	9.30	100%	0.5	L/día/m2	4.7
Cto. de Limpieza	5.82	100%	0.5	L/día/m2	2.9
Oficina 01	111.98	100%	6	L/día/m2	671.9
Oficina 02	132.91	100%	6	L/día/m2	797.5
Oficina 03	132.91	100%	6	L/día/m2	797.5
Oficina 04	111.95	100%	6	L/día/m2	671.7
Oficina 05	174.93	100%	6	L/día/m2	1049.6
Oficina 06	153.37	100%	6	L/día/m2	920.2
Oficina 07	95.71	100%	6	L/día/m2	574.3
Oficina 08	115.93	100%	6	L/día/m2	695.6
Oficina 09	114.56	100%	6	L/día/m2	687.4
Oficina 10	114.56	100%	6	L/día/m2	687.4
Oficina 11	114.56	100%	6	L/día/m2	687.4
Oficina 12	119.92	100%	6	L/día/m3	719.5
NIVEL 08 a (+23.60m)					
Lactario	10.00	100%	6	L/día/m2	60.0
Cto. de Basura	9.30	100%	0.5	L/día/m2	4.7
Cto. de Limpieza	5.82	100%	0.5	L/día/m2	2.9
Oficina 01	111.98	100%	6	L/día/m2	671.9
Oficina 02	132.91	100%	6	L/día/m2	797.5
Oficina 03	132.91	100%	6	L/día/m2	797.5
Oficina 04	111.95	100%	6	L/día/m2	671.7
Oficina 05	174.93	100%	6	L/día/m2	1049.6
Oficina 06	153.37	100%	6	L/día/m2	920.2
Oficina 07	95.71	100%	6	L/día/m2	574.3
Oficina 08	115.93	100%	6	L/día/m2	695.6
Oficina 09	114.56	100%	6	L/día/m2	687.4
Oficina 10	114.56	100%	6	L/día/m2	687.4
Oficina 11	114.56	100%	6	L/día/m2	687.4
Oficina 12	133.63	100%	6	L/día/m3	801.8
NIVEL 09 a (+27.35m)					
Lactario	10.00	100%	6	L/día/m2	60.0
Cto. de Basura	9.30	100%	0.5	L/día/m2	4.7
Cto. de Limpieza	5.82	100%	0.5	L/día/m2	2.9
Oficina 01	111.98	100%	6	L/día/m2	671.9
Oficina 02	132.91	100%	6	L/día/m2	797.5

				(m3/día)	93.08
DEMANDA TOTAL				(I/día)	93,084.3
Cuarto de Limpieza	5.85	100%	0.5	L/día/m2	2.9
Cuarto de Basura	9.30	100%	0.5	L/día/m2	4.7
Cuarto Remarcadores Elect. y Data	8.05	100%	6	L/día/m2	48.3
Lactario	10.00	100%	6	L/día/m2	60.0
Sala SUM 2	80.00	Asientos	3	L/asiento/día	240.0
Sala SUM 1	90.00	Asientos	3	L/asiento/día	270.0
Bodegas	79.92	100%	0.5	L/día/m2	40.0
Comedor (Área de Mesas)	313.00	100%	6	L/día/m2	1878.0
NIVEL 10 a (+0.00m)					
Oficina 12	133.63	100%	6	L/día/m3	801.8
Oficina 11	114.56	100%	6	L/día/m2	687.4
Oficina 10	114.56	100%	6	L/día/m2	687.4
Oficina 09	114.56	100%	6	L/día/m2	687.4
Oficina 08	115.93	100%	6	L/día/m2	695.6
Oficina 07	95.71	100%	6	L/día/m2	574.3
Oficina 06	153.37	100%	6	L/día/m2	920.2
Oficina 05	174.93	100%	6	L/día/m2	1049.6
Oficina 04	111.95	100%	6	L/día/m2	671.7
Oficina 03	132.91	100%	6	L/día/m2	797.5

Por lo tanto, la Cisterna de Agua Potable para del Proyecto MERCADERES deberá tener una capacidad mínima de 93.08 m3

CALCULO DE LOS CAUDALES DE DISEÑO DE AGUA POTABLE

Considerar las siguientes formulas:

ALMACENAMIENTO DE AGUA POTABLE

De los cálculos realizados, la demanda de agua diaria es de 93.08 m3, la cual deberá estar almacenada dentro de las cisternas de agua potable

Según la Arquitectura del proyecto, se proyectará un almacenamiento de agua, con una capacidad mayor a la demanda diaria de agua potable, por lo que se considerará un volumen total de almacenamiento de agua de:

Vol ACD = $93.08 \text{ m}^3/\text{día}$

El volumen de agua para consumo doméstico será almacenado en dos cisternas, para no desabastecer al consumo de la Edificación en caso se tenga que dar mantenimiento a una de las cisternas.

<u>DIMENSION DE LAS CISTERNAS DE ALMACENAMIENTO DE A.P. PARA CONSUMO DOMESTICO PROYECTADAS:</u>

Se considerará que las cisternas tendrán estas dimensiones:

CISTERNA DE AGUA Nº 1

Vol mínimo		46.54	m3
H total	=	2.92	m
Altura a fondo de cisterna	=	0.10	m
$H_{\text{util dom}}$	=	1.82	m
Altura Libre	=	1.00	m
Área	=	56.94	m^2
V _{util} dom cisterna	=	103.60	m^3
CISTERNA DE AGUA Nº2			
Vol mínimo		46.54	m3
H total	=	2.92	m
Altura a fondo de cisterna	=	0.10	m
H _{util dom}	=	1.82	m
Borde Libre	=	1.00	m
Área	=	54.66	m^2
V _{util} dom cisterna	=	99.50	m^3
V total de almacenamiento	=	203.10	m³

Por lo tanto, la Cisternas Proyectadas N°1 y 2, tendrán una capacidad acumulada de 203.1 m3, los cuales cubren la demanda diaria del Proyecto.

ANEXO N°2: Máxima demanda simultanea de agua fría

MÁXIMA DEMANDA SIMULTÁNEA DE AGUA FRIA

Se determinará la máxima demanda simultánea para conocer las características hidráulicas de los equipos a instalar en el cuarto de bombas, para las dos cisternas de abastecimiento de agua potable.

Para la determinación de la máxima demanda simultánea se requiere utilizar el método de Hunter.

6.1 MÁXIMA DEMANDA SIMULTÁNEA DE AGUA POTABLE

Descripción	Cantidad	U. de gasto	Total
ANTA NIVEL -1 (SOTANO 1)			
PLAZA VEA			
Ejes (C'-D': 18-17)			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
· ,			
Lavatorio (PR)	01	1	1
Baños Trabajadores (Ejes B'-D'; 15-16)			
SSHH Hombres			
Inodoro c/Fluxómetro (PU)	03	4	12
Urinario c/Fluxómetro (PU)	03	2.5	7.5
Lavatorio (PU)	03	1	3
Duchas (PU)	03	2	6
SSHH Mujeres			
Inodoro c/Fluxómetro (PU)	03	4	12
, ,		·	
Lavatorio (PU)	03	1	3
Duchas (PU)	03	2	6
Ejes (C'; 15-16)			
Dispensador de Agua	01	1	1
Sala de Basura PV (Ejes B'-C'; 14-15)			
Lava mopas (Asumido)	01	3	3
Figs (D): 45)			
Ejes (D'; 15)	04		2
Lavadero con pedestal	01	3	3
Lava mopas	01	3	3
Ejes B'-C'; 14-15			
Lavadero de poza	01	3	3
Ejes (C'; 14)			
Manguera Helicoidal	01	3	3

Ejes (E'; 12)			
Manguera Helicoidal	01	3	3
SALA DE BASURA (I-J;11-12) Asumido			
Lavadero (limpieza) (PR)	01	03	3
Lava mopas	01	03	3
S.H. PERSONAL (G'-H';9)			
Inodoro c/Fluxómetro (PR)	01	3	3
Lavatorio (PR)	01	1	1
S.H. (G'-H';6-8)			
SSHH Hombres / Empleados			
Inodoro c/Fluxómetro (PU)	02	4	8
Urinario c/Fluxómetro (PU)	02	2.5	5
Lavatorio (PU)	02	1	2
Duchas (PU)	02	2	4
SSHH Mujeres / Empleados			
Inodoro c/Fluxómetro (PU)	02	4	8
Lavatorio (PU)	02	1	2
Duchas (PU)	02	2	4
S.H. (F'-G';6-8)			
SSHH Hombres / Visitantes			
Inodoro c/Fluxómetro (PU)	02	4	8
Urinario c/Fluxómetro (PU)	02	2.5	5
Lavatorio (PU)	02	1	2
SSHH Mujeres / Visitantes			
Inodoro c/Fluxómetro (PU)	02	4	8
Lavatorio (PU)	02	1	2
SSHH Discapacitados / Visitantes			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1
ANTA NIVEL 1			
DI AZA VEA			
PLAZA VEA SSHH Hombres (E-F;8-10)			
SSHH Hombres			
Inodoro c/Fluxómetro (PU)	06	4	24
· · · · · · · · · · · · · · · · · · ·		2.5	15
Urinario c/Fluxómetro (PU)	06	2.3	10

SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1
SSHH Mujeres			
Inodoro c/Fluxómetro (PU)	06	4	24
Lavatorio (PU)	06	1	6
TRANSTIENDA PLAZA VEA			
Laboratorio Comidas Preparadas			
Lavadero 2 Pozas	01	6	6
Horno Rotacional F-99	02	3	6
Laboratorio de Panadería			
Lavadero 1 Poza	01	3	3
Horno Pto Caliente Salva	02	3	6
Ejes (B; 10)			
Manguera Helicoidal	01	3	3
Laboratorio de Fiambres y Quesos			
Lavadero 1 Poza	01	3	3
Laboratorio de Carnes			
Lavadero 1 Poza	01	3	3
Laboratorio de Frutas y Verduras			
Lavadero 1 Poza	01	3	3
CUARTO DE ASEO (Ejes D-E:8-9)			
Lava mopas	01	3	3
Manguera Helicoidal	01	3	3
Lavadero Centro de Aseo	01	3	3
SALA DE VENTA (Ejes E-F:7-8)			
Lavadero 1 Poza	02	3	6
Máquina de Hielo	01	1	1
SSHH (A-B; 2a-4)			
SSHH Colaboradores			
Inodoro c/Fluxómetro (PR)	02	3	6
Urinario c/Fluxómetro (PR)	02	2.5	5
Lavatorio (PR)	02	1	2
SSHH Clientes			
Inodoro c/Fluxómetro (PR)	02	3	6
Lavatorio (PR)	02	1	2

LOCALES COMERCIALES			
LOCAL COMERCIAL 01 (Asumido)			
Inodoro c/Fluxómetro (PR)	01	6	6
Lavatorio (PR)	01	1	1
Urinario (PR)	01	5	5
LOCAL COMERCIAL 02 (Asumido)			
Inodoro c/Fluxómetro (PR)	04	6	24
Lavatorio (PR)	04	1	4
Urinario (PR)	02	5	10
Lavadero de cocina	01	3	3
LOCAL COMERCIAL 02 (Acumido)			
LOCAL COMERCIAL 03 (Asumido) Inodoro c/Fluxómetro (PR)	01	6	6
		6	6
Lavatorio (PR)	01	1	1
Urinario (PR)	01	5	5
LOCAL COMERCIAL 04 (Asumido)			
Inodoro c/Fluxómetro (PR)	01	6	6
Lavatorio (PR)	01	1	1
Urinario (PR)	01	5	5
LOCAL COMERCIAL 05 (Asumido)			
Inodoro c/Fluxómetro (PR)	01	6	6
Lavatorio (PR)	01	1	1
Urinario (PR)	01	5	5
LOCAL COMERCIAL 06 (Asumido)			
Inodoro c/Fluxómetro (PR)	01	6	6
Lavatorio (PR)	01	1	1
Urinario (PR)	01	5	5
Urinario (PR)	01	5	5
LANTA NIVEL 2			
	-	-	-
PLAZA VEA			
SSHH Hombres (E-F;8-10)			
SSHH Hombres			
Inodoro c/Fluxómetro (PU)	06	4	24
Urinario c/Fluxómetro (PU)	06	2.5	15
Lavatorio (PU)	06	1	6
SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1

SSHH Mujeres			
Inodoro c/Fluxómetro (PU)	06	4	24
Lavatorio (PU)	06	1	6
	_	_	_
PLANTA NIVEL 3			
PLAZA VEA			
FLAZA VEA			
Cto. Limpieza			
Lava mopas	01	3	3
Almacén ECOMERCE (Cto. Aseo)			
Lavadero	01	3	3
PLANTA NIVEL 4			
No se tiene aparatos Sanitarios para este			
nivel			
PLANTA NIVEL 5			
OFICINA GDH	-	-	-
SSHH Hombres (Ejes D-E;3-4)			
Inodoro c/Fluxómetro (PU)	09	8	72
Urinario c/Fluxómetro (PU)	09	5	45
Lavatorio (PU)	05	2	10
SSHH Mujeres (Ejes E-F;3-4)			
Inodoro c/Fluxómetro (PU)	09	8	72
Lavatorio (PU)	10	2	20
KITCHENETTE			
Lavatorio (PU)	02	2	4
0510111001			
OFICINAS 01 SSHH Hombres			
Inodoro c/Fluxómetro (PU)	01	8	8
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	01	2	2
Lavaiono (1 0)	01		
SSHH Mujeres			
Inodoro c/Fluxómetro (PU)	01	8	8
Lavatorio (PU)	01	2	2
Kitchenette			
Lavatorio (PU)	01	2	2
· · ·			
OFICINAS 02			

SSHH Hombres			
Inodoro c/Fluxómetro (PU)	01	8	8
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	01	2	2
SSHH Mujeres			
Inodoro c/Fluxómetro (PU)	01	8	8
Lavatorio (PU)	01	2	2
Kitchenette			
Lavatorio (PU)	01	2	2
OFICINAS 03			
SSHH Hombres			
Inodoro c/Fluxómetro (PU)	01	8	8
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	01	2	2
SSHH Mujeres			
Inodoro c/Fluxómetro (PU)	01	8	8
Lavatorio (PU)	01	2	2
Kitchenette			
Lavatorio (PU)	01	2	2
AREA COMUN			
Cuarto de Basura (Asumido)			
Lavadero (limpieza)	1	3	3
Lava mopas	1	3	3
Cuarto de Limpieza (Asumido)			
Lavadero (limpieza)	1	3	3
SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1
PLANTA NIVEL 6			
-	-	-	
OFICINA 1			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 2			

SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 3			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 4			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 5			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 6			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 7			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 8			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 9			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 10			

SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 11			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 12			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
AREA COMUN			
Cuarto de Basura (Asumido)			
Lavadero (limpieza)	1	3	3
Lava mopas	1	3	3
Cuarto de Limpieza (Asumido)			
Lavadero (limpieza)	1	3	3
SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1
ESTACIONAMIENTOS			
Grifos de Riego	05	3	15
LANTA NIVEL 7			
			
OFICINA 1			
SSHH	00	0	40
Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU)	02	8 5	16 5
Lavatorio (PU)	01	5	6
Lavatorio (1 0)	03		0
OFICINA 2			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 3			

SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 4			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 5			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 6			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 7			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 8			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 9			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 10			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 11			

SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 12			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
AREA COMUN			
Cuarto de Basura (Asumido)			
Lavadero (limpieza)	1	3	3
Lava mopas	1	3	3
Cuarto de Limpieza (Asumido)			
Lavadero (limpieza)	1	3	3
SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Officiallo Griuxoffiello (PK)			
Lavatorio (PR) Lavatorio (PR) LANTA NIVEL 8	01	1	1
Lavatorio (PR)	01	1	1
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH	01	1	1
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU)	01	1 8	1 16
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH			
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU)	02	8	16
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU)	02 01	8 5	16 5
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH	02 01 03	8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU)	02 01 03	8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU)	02 01 03 02 02 01	8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU)	02 01 03	8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 3	02 01 03 02 02 01	8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 3 SSHH	02 01 03 02 02 01	8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) COFICINA 3 SSHH Inodoro c/Fluxómetro (PU)	02 01 03 02 01 02 01 03	8 5 2 8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 3 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Urinario c/Fluxómetro (PU)	02 01 03 02 01 03 02 01 02 01	8 5 2 2 8 5 2	16 5 6 16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) COFICINA 3 SSHH Inodoro c/Fluxómetro (PU)	02 01 03 02 01 02 01 03	8 5 2 8 5 2	16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 3 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Urinario c/Fluxómetro (PU)	02 01 03 02 01 03 02 01 02 01	8 5 2 8 5 2	16 5 6 16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 3 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) OFICINA 4 SSHH	02 01 03 02 01 03 02 01 02 01	8 5 2 8 5 2	16 5 6 16 5 6
Lavatorio (PR) LANTA NIVEL 8 OFICINA 1 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 2 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 3 SSHH Inodoro c/Fluxómetro (PU) Urinario c/Fluxómetro (PU) Lavatorio (PU) OFICINA 3 SCHH Inodoro c/Fluxómetro (PU) Lavatorio (PU) OFICINA 4	02 01 03 02 01 03 02 01 02 01	8 5 2 8 5 2	16 5 6 16 5 6

Lavatorio (PU)	03	2	6
OFICINA 5			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 6			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 7			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
Lavatorio (i O)			0
OFICINA 8			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 9			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 10			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 11			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 42			
OFICINA 12			
SSHH	00		40
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5

Lavatorio (PU)	03	2	6
AREA COMUN			
Cuarto de Basura (Asumido)			
Lavadero (limpieza)	1	3	3
Lava mopas	1	3	3
Cuarto de Limpieza (Asumido)			
Lavadero (limpieza)	1	3	3
SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1
Lavatorio (FR)	01	1	1
PLANTA NIVEL 9		<u> </u>	1
OFICINA 1			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
· · ·			
OFICINA 2			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 3			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 4			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
· · · · · · · · · · · · · · · · · · ·			
OFICINA 5			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINIA C			
OFICINA 6			

SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 7			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 8			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 9			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 10			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 11			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
OFICINA 12			
SSHH			
Inodoro c/Fluxómetro (PU)	02	8	16
Urinario c/Fluxómetro (PU)	01	5	5
Lavatorio (PU)	03	2	6
AREA COMUN			
Cuarto de Basura (Asumido)			
Lavadero (limpieza)	1	3	3
Lava mopas	1	3	3
Cuarto de Limpieza (Asumido)			
Lavadero (limpieza)	1	3	3

SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1
PLANTA NIVEL 10			
SSHH Hombres			
Inodoro c/Fluxómetro (PU)	05	4	20
Urinario c/Fluxómetro (PU)	05	2.5	12.5
Lavatorio (PU)	05	1	5
SSHH Mujeres		+	
Inodoro c/Fluxómetro (PU)	05	4	20
Lavatorio (PU)	05	1	5
COCINA			
Lavaderos	02	3	6
Lactario			
Lavamanos	01	1	1
AREA COMUN			
Cuarto de Basura (Asumido)			
Lavadero (limpieza)	1	3	3
Lava mopas	1	3	3
Cuarto de Limpieza (Asumido)			
Lavadero (limpieza)	1	3	3
SSHH Discapacitados			
Inodoro c/Fluxómetro (PR)	01	3	3
Urinario c/Fluxómetro (PR)	01	2.5	2.5
Lavatorio (PR)	01	1	1
PLANTA NIVEL 10 (TECHOS)			
ZONA DE EQUIPOS			
Grifo de Riego	01	3	3
	Tota	al, Unidades Hunter	2270
		a simultánea Its/seg	13.29

Por lo tanto, el Gasto Probable, producto de la suma del conteo de las Unidades Hunter sera de 13.29 l/s

ANEXO N°3: Calculo hidráulico de la red de agua potable

CALCULO HIDRAULICO DE LA RED DE AGUA POTABLE

TRAMO	U.H.	Q	D	D int	v	codo	tees	val.	reduc.	Lacc	Ltub. H	Ltub. V	Lt	hf	Р	
TRAINO	О.П.	lps	pulg	mm	m/s	Codo	lees	vai.	reduc.	m	m	m	m	m	m	
		ipo	puig		111/3					•••		•••			***	
	-	-	RECORR	IDO AGL	IA POTA	BLE PA	RA PIS	O 10	-	-	-			-		
															21.11	30.00
Nivel 10 (altura de inodoro +32.00m)				1	T						,			•		
A0-A1	4	0.87	1 1/4	31.00	1.153	1	0	0	0	1.100	0.93	0.00	2.030	0.097	21.20	30.14
A1-A2	8	1.00	1 1/2	38.80	0.846	0	1	0	1	3.300	0.93	0.00	4.230	0.088	21.29	30.26
A2-A3	12	1.12	1 1/2	38.80	0.947	0	1	0	0	2.800	0.93	0.00	3.730	0.095	21.39	30.40
А3-В	16	1.22	1 1/2	38.80	1.032	0	1	0	0	2.800	0.93	0.00	3.730	0.112	21.50	30.56
Nivel 10 (altura +32.00) a Nivel 10 (altura de piso +31.15m)																
B-C	20	1.33	1 1/2	38.80	1.125	3	1	1	0	7.000	1.80	0.85	9.650	0.339	22.69	32.25
C-D	32.5	1.59	1 1/2	38.80	1.345	0	1	0	0	2.800	2.34	0.00	5.140	0.251	22.94	32.60
D-E	37.5	1.69	2	48.80	0.904	0	1	0	1	4.200	0.77	0.00	4.970	0.089	23.03	32.73
E-F	57.5	2.07	2	48.80	1.107	0	1	0	0	3.500	1.46	0.00	4.960	0.129	23.16	32.91
F-G	62.5	2.13	2	48.80	1.139	0	1	0	0	3.500	1.43	0.00	4.930	0.135	23.29	33.11
G-H	72.5	2.25	2	48.80	1.203	0	1	0	0	3.500	16.04	0.00	19.540	0.594	23.89	33.95
Nivel 10 (altura de piso +31.15m) a Nivel 7 (altura de +22.59)																
H-I	72.5	2.25	2	48.80	1.203	5	0	0	0	8.500	2.64	8.56	19.700	0.599	33.04	46.97
Nivel 7 (altura de +22.59m) a Nivel 5 (altura de +15.65)																
I-J	165.5	3.08	2 1/2	58.20	1.158	0	1	0	1	5.200	0.00	6.94	12.140	0.280	40.26	57.23
Nivel 5 (altura de +15.65m) a Nivel -1(altura de - 1.02)																
J-K	469.5	5.13	3	69.80	1.341	1	1	0	1	8.800	5.19	16.67	30.662	0.751	57.69	82.00
Nivel -1(altura de -1.02) a Nivel -2 (altura de - 4.81)																
K-L	538	5.51	3	69.80	1.440	3	0	0	0	7.500	22.41	3.79	33.700	0.942	62.42	88.72
Nivel -2 (altura de -4.81) a Manifold (altura de -7.34)																

L-M	553	5.59	3	69.80	1.461	0	1	2	0	13.36	0.00	2.53	15.889	6.89	71.83	102.11	PS
Manifold (altura de -7.34)																	
M-N	1938	11.87	6	124.20	0.980	0	1	0	0	10.00	0.30	0.00	10.300	0.072	71.91	102.21	F
Manifold (altura de -7.34) a Transición (altura de 5.17)																	
N-Ñ	2237	13.16	6	124.20	1.086	2	1	0	0	19.80	1.50	-2.17	23.470	0.199	69.93	99.41	F
PERDIDAD DE CARGA EN EL TRAMO PRINCIPAI	L													11.66			

TRAMO	U.H.	Q	D	D int	v	codo	tees	val.	reduc.	Lacc	Ltub. H	Ltub. V	Lt	hf	Р
		lps	pulg	mm	m/s					m	m	m	m	m	m

	RECORRID	O AGU	POTAB	LE PARA	EDIFICI	O SS.H	H. NIVE	L -1 (T	RABAJ	ADORES)		_	<u>-</u>			
								•							24.37	34.64
ivel -1 (altura de inodoro -1.90m) a Ni	vel -1 (altura de pi	so -2.75	m)									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			
A-B	4	0.87	1 1/4	31.00	1.153	2	0	0	0	2.200	0.26	0.85	3.310	0.158	25.38	36.07
ivel -1 (altura de piso -2.75m) a Nivel	-1 (altura de -1.01r	n)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			
B-C	6.5	0.94	1 1/2	38.80	0.795	5	1	1	1	10.100	12.26	-1.74	24.100	0.445	24.08	34.23
ivel -1 (altura de -1.01m)												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,			
C-D	7.5	0.97	1 1/2	38.80	0.820	0	1	0	0	2.800	0.91	0.00	3.712	0.073	24.15	34.33
D-E	28.5	1.51	1 1/2	38.80	1.277	0	1	0	0	2.800	1.55	0.00	4.350	0.193	24.35	34.61
E-F	57	2.07	2	48.80	1.107	0	1	0	1	4.200	0.71	0.00	4.913	0.128	24.47	34.79
F-G	63	2.15	2	48.80	1.149	2	1	0	0	6.900	7.36	0.00	14.260	0.399	24.87	35.36
G-H	69	2.22	2	48.80	1.187	0	1	0	0	3.500	3.02	0.00	6.520	0.193	25.07	35.63
ivel -1 (altura de -1.01m) a Nivel -1 (al	tura de -1.16m)											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			
H-I	72	2.25	2	48.80	1.203	9	1	1	0	19.200	26.05	0.15	45.400	1.381	26.60	37.81
I-J	75	2.29	2	48.80	1.224	0	1	0	0	3.500	1.33	0.00	4.830	0.152	26.75	38.02
ERDIDAD DE CARGA EN EL TRAMO	PRINCIPAL													3.12		

TRAMO	U.H.	Q	D	D int	v	codo	tees	val.	reduc.	Lacc	Ltub. H	Ltub. V	Lt	hf	Р
		lps	pulg	mm	m/s					m	m	m	m	m	m

	REC	ORRIDO	O AGUA F	POTABLI	E PARA I	PLAZA '	VEA AL	MACE	N NIVEL	3						
															17.59	25.
Nivel 3 (altura de lavamopas +6.70m) a Nivel 2 (altura de	nicho +	3.50m)									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			
A-B	3	0.12	1/2	14.40	0.737	3	0	1	0	1.600	0.56	3.20	5.360	0.273	21.06	29.
livel 2 (altura de nicho +3.50m) a Nivel 1 (altura	de +2.55	im)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,			
B-C	9	0.32	3/4	18.00	1.258	0	1	0	1	1.600	0.00	0.95	2.550	0.270	22.28	31.
livel 1 (altura de +2.55)																
C-D	15	0.44	1	24.80	0.911	1	1	0	1	2.800	1.16	0.00	3.960	0.159	22.44	31.
livel 1 (altura de +2.55) a Nivel -1 (altura de - .16)																
D-E	63	2.15	2	48.80	1.149	4	1	1	1	11.400	6.40	3.71	21.510	0.601	26.75	38.
livel -1 (altura de -1.16)																
E-F	138	2.84	2 1/2	58.20	1.068	0	1	0	1	5.200	3.21	0.00	8.410	0.167	26.92	38.
livel -1 (altura de -1.16) a Nivel -2 (altura de -4.8	31)															
F-G	171	3.13	2 1/2	58.20	1.177	2	1	0	0	8.300	2.29	3.65	14.240	0.338	30.91	43.9
livel -2 (altura de -4.81) a V.R.1 (-5.64m)				_								1				
G-H	299	4.11	2 1/2	58.20	1.545	0	1	0	0	4.300	0.00	0.83	5.130	0.202	60.91	86.
/.R. (-5.64m) a Manifold (-7.34m)																
H-I	299	4.11	2 1/2	58.20	1.545	0	0	2	0	9.32	0.00	1.70	11.024	6.868	69.48	98.
PERDIDAD DE CARGA EN EL TRAMO PRINCIPA	AL													8.88		
TRAMO	U.H.	Q	D	D int	v	codo	tees	val.	reduc.	Lacc	Ltub. H	Ltub. V	Lt	hf	Р	
		lps	pulg	mm	m/s					m	m	m	m	m	m	

	RI	ECORRI	DO AGUA	POTAB	LE PARA	PLAZA	A VEA S	SS.HH.	NIVEL 2							•	
															18.26	25.95	PSI
Nivel 2 (altura de inodoro +3.65m) a Nivel 2 (al	ura de +3	.30m)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,				
A'0-A1'	4	0.87	1 1/4	31.00	1.153	1	1	0	0	3.400	0.85	0.35	4.600	0.220	18.83	26.76	PSI
A1'-A2'	8	1.00	1 1/2	38.80	0.846	0	1	0	1	3.300	0.93	0.00	4.230	0.088	18.92	26.89	PSI

A2'-A3'	12	1.12	1 1/2	38.80	0.947	0	1	0	0	2.800	0.93	0.00	3.730	0.095	19.01	27.02	Ρ
A3'-A4'	16	1.22	1 1/2	38.80	1.032	0	1	0	0	2.800	0.93	0.00	3.730	0.112	19.12	27.18	Ρ
A4'-A5'	20	1.33	1 1/2	38.80	1.125	0	1	0	0	2.800	0.93	0.00	3.730	0.131	19.25	27.37	Ρ
A5'-A6'	24	1.42	1 1/2	38.80	1.201	5	1	1	0	9.600	2.81	0.00	12.410	0.492	19.74	28.07	P
Nivel 2 (altura de +3.30m) a Nivel 1 (altura de +2.5	50m)											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,				
A'6-A	39	1.72	2	48.80	0.920	0	1	0	1	4.200	0.00	0.80	5.000	0.092	20.64	29.34	Р
Nivel 1 (altura de +2.50m)																	
A-B	78	2.33	2	48.80	1.246	0	1	0	0	3.500	1.23	0.00	4.730	0.154	20.79	29.55	Ρ
Nivel 1 (altura de +2.50m) a Nivel -1 (altura de - 1.02m)																	
B-C	103	2.57	2	48.80	1.374	2	1	0	0	6.900	6.28	3.52	16.700	0.650	24.96	35.48	Ρ
Nivel -1 (altura de -1.02m)																	
C-D	109	2.60	2	48.80	1.390	1	1	0	0	5.200	3.66	0.00	8.860	0.352	25.31	35.98	Р
D-E	112	2.62	2	48.80	1.401	0	1	0	0	3.500	3.04	0.00	6.540	0.264	25.58	36.36	Ρ
E-F	115	2.66	2	48.80	1.422	0	1	0	0	3.500	1.10	0.00	4.600	0.191	25.77	36.63	Ρ
F-G	116	2.67	2	48.80	1.428	0	1	0	0	3.500	2.53	0.00	6.030	0.252	26.02	36.99	Ρ
Nivel -1 (altura de -1.02m) a Nivel -2 (altura de - 4.81m)																	
G-H	128	2.78	2	48.80	1.486	3	1	0	0	8.600	12.10	3.79	24.490	1.102	30.91	43.94	P
PERDIDAD DE CARGA EN EL TRAMO PRINCIPA	L L		<u>I</u>	1	1		<u> </u>	<u> </u>	<u>I</u>	_1	l	I	I	4.19		ı	
											LAude						

	RE	CORRI	OO AGUA	POTAB	LE PARA	PLAZA	VEAS	SS.HH.	NIVEL -	1	_	-	_	_		
															17.59	
Nivel -1 (altura de inodoro -3.30m) a Nivel	-1 (altura de -4	.15m)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			
A"-B"	4	0.87	1 1/4	31.00	1.153	3	0	0	0	3.300	1.18	0.30	4.780	0.228	18.12	
Nivel -1 (altura de -4.15m) a Nivel -1 (altur	a de -0.7 <mark>6m)</mark>											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			
B"-C"	8	1.00	1 1/2	38.80	0.846	4	1	1	1	8.800	1.11	-3.39	13.300	0.275	15.00	
C"-D"	12	1.12	1 1/2	38.80	0.947	0	1	0	0	2.800	1.19	0.00	3.987	0.102	15.10	:
D"-E"	19	1.30	1 1/2	38.80	1.099	0	1	0	0	2.800	0.56	0.00	3.360	0.113	15.22	:

codo tees val. reduc.

Lacc

Ltub. V

Lt

Q

pulg

U.H.

TRAMO

D int

mm

m/s

E"-F"	21	1.35	2	48.80	0.722	0	1	0	1	4.200	1.13	0.00	5.330	0.063	15.28	21.72	PS
F"-G"	29	1.53	2	48.80	0.818	0	1	0	0	3.500	1.97	0.00	5.470	0.081	15.36	21.83	
G"-H"	33	1.61	2	48.80	0.861	0	1	1	0	3.900	1.35	0.00	5.250	0.086	15.45	21.96	PS
H"-I"	37	1.69	2	48.80	0.904	0	1	0	0	3.500	0.69	0.00	4.190	0.075	15.52	22.06	PS
V.R.3																	
l"-J"	68.5	2.21	2	48.80	1.182	0	1	0	0	3.500	0.50	0.00	4.000	0.118	57.66	81.96	PS
J"-K"	68.5	2.21	2	48.80	1.182	0	0	0	0	0.000	0.93	0.00	0.930	0.027	57.69	82.00	PS
PERDIDAD DE CARGA EN EL TRAMO PRINCIPA	۸L													1.17			

TRAMO	U.H.	Q	D	D int	v	codo	tees	val.	reduc.	Lacc	Ltub. H	Ltub. V	Lt	hf	Р	
3.0.00		lps	pulg	mm	m/s	0000			10000	m	m	m	m	m	m	
																_
	R	ECORR	IDO AGU	A POTA	BLE SS.I	H. ARE	EA CON	IUN NI	VEL 10			_	_			
															19.63	27.90 PSI
Nivel 10 (altura de inodoro +31.89m) a Nivel 10 (a				ı	1	1			1	1			Г	1	ı	
A-B	6.5	0.94	1 1/4	31.00	1.245	7	2	1	0	12.500	8.81	-2.15	23.460	1.292	18.77	26.68 PSI
B-C	9.5	1.03	1 1/4	31.00	1.365	0	1	0	0	2.300	0.25	0.00	2.550	0.166	18.94	26.92 PSI
Nivel 10 (altura de +34.04m) a Nivel 9 (altura de +30.14m)																
C-D	15.5	1.20	1 1/2	38.80	1.015	1	1	0	0	4.100	1.34	3.90	9.340	0.271	23.11	32.85 PSI
Nivel 9 (altura de +30.14m) a Nivel 8 (altura de +26.35m)																
D-E	31	1.57	1 1/2	38.80	1.328	0	1	0	1	3.300	0.00	3.79	7.090	0.338	27.24	38.72 PSI
Nivel 8 (altura de +26.35m) a Nivel 7 (altura de +22.59m)																
E-F	46.5	1.84	1 1/2	38.80	1.556	0	1	0	0	2.800	0.00	3.76	6.560	0.420	31.42	44.66 PSI
Nivel 7 (altura de +22.59m)																
F-G	77.5	2.31	2	48.80	1.235	0	1	0	1	4.200	1.26	0.00	5.460	0.174	31.59	44.90 PSI
G-H	83.5	2.38	2	48.80	1.272	0	1	0	0	3.500	0.37	0.00	3.870	0.131	31.72	45.09 PSI
H-I	86.5	2.41	2	48.80	1.288	0	1	0	0	3.500	4.57	0.00	8.070	0.279	32.00	45.49 PSI
I-J	93	2.48	2	48.80	1.326	3	1	0	0	8.600	19.92	0.00	28.520	1.039	33.04	46.96 PSI
PERDIDAD DE CARGA EN EL TRAMO PRINCIPA	<u> </u>						1							4.11		

TRAMO	U.H.	Q	D	D int	v	codo	tees	val.	reduc.	Lacc	Ltub. H	Ltub. V	Lt	hf	Р
7.0	O	lps	pulg	mm	m/s	Jour	1000	van	rouder	m	m	m	m	m	m

		RECOR	RIDO AG	UA POT	ABLE SS	.HH. AR	EA CO	MUN F	PISO 5						
															38.46
Nivel 5 (altura de inodoro +12.90m) a Nivel 5 (alt			ı	T	I		I		1	1	1	ı	1	1	ı
A-B	6.5	0.94	1 1/4	31.00	1.245	7	2	1	0	12.500	8.81	-2.21	23.520	1.296	37.54
B-C	9.5	1.03	1 1/4	31.00	1.365	0	1	0	0	2.300	0.25	0.00	2.550	0.166	37.71
livel 5 (altura de +15.11m) a Nivel 6 (altura de +		4.00	4.4/0	00.00	4.045	1		_		4.000	4.00	0.05	0.040	0.050	05.00
C-D Nivel 6 (altura de +18.87m) a Nivel 7 (altura de +	15.5	1.20	1 1/2	38.80	1.015	1	1	0	1	4.600	1.26	-2.95	8.810	0.256	35.02
D-E	31	1.57	2	48.80	0.839	0	1	0	1	4.200	0.00	-3.72	7.920	0.124	31.42
D-L	31	1.57		40.00	0.059	0	'	0	'	4.200	0.00	-5.72	7.320	0.124	31.42
PERDIDAD DE CARGA EN EL TRAMO PRINCIPA	ıL.				1		I					l .	u	1.84	
														•	•
			_								Ltub.			1.6	Р
TRAMO	U.H.	Q .	D	D int	V	codo	tees	val.	reduc.	Lacc	Н	Ltub. V	Lt	hf	-
TRAMO	U.H.	lps	D pulg	D int mm	V m/s	codo	tees	val.	reduc.	Lacc m	H m	Ltub. V m	Lt m	nt m	m
TRAMO	U.H.					codo	tees	val.	reduc.						-
TRAMO	U.H.	lps		mm	m/s				reduc.						m
	U.H.	lps	pulg	mm	m/s				reduc.						-
Punto de Agua para Grifo del Piso 6 (+15.85m)		lps	pulg RECORR	mm IDO AGU	m/s IA POTA	BLE PA	RA GR	IFOS		m	m	m	m	m	10.00
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B	U.H. 3	lps	pulg	mm	m/s				reduc.						m
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m)	3	1ps 0.12	pulg RECORR	IDO AGL	m/s A POTA 0.472	BLE PA	RA GR	iFOS	0	m 1.500	m 0.78	0.00	2.280	0.039	10.00 10.04
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C		lps	pulg RECORR	mm IDO AGU	m/s IA POTA	BLE PA	RA GR	IFOS		m	m	m	m	m	10.00
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C Piso 5(Ntp +12.75m) - Piso 4(Ntp +9.65m)	3 6	0.12 0.25	RECORR 3/4 3/4	18.00 18.00	0.472 0.982	2 1	RA GR	1 0	0	1.500 2.100	0.78 0.00	0.00 3.10	2.280 5.200	0.039 0.348	10.00 10.04 13.49
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C Piso 5(Ntp +12.75m) - Piso 4(Ntp +9.65m) C-D	3	1ps 0.12	pulg RECORR	IDO AGL	m/s A POTA 0.472	BLE PA	0 1	iFOS	0	m 1.500	m 0.78	0.00	2.280	0.039	10.00 10.04
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C Piso 5(Ntp +12.75m) - Piso 4(Ntp +9.65m) C-D	3 6	0.12 0.25	RECORR 3/4 3/4	18.00 18.00	0.472 0.982	2 1	0 1	1 0	0	1.500 2.100	0.78 0.00	0.00 3.10	2.280 5.200	0.039 0.348 0.476	10.00 10.04 13.49
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C Piso 5(Ntp +12.75m) - Piso 4(Ntp +9.65m) C-D Piso 4(Ntp +9.65m) - Piso 3(Ntp +6.55m) D-E	3 6 9	0.12 0.25 0.32	3/4 3/4 3/4	18.00 18.00	0.472 0.982 1.258	2 1	0 1	1 0	0 0	1.500 2.100 1.400	0.78 0.00 0.00	0.00 3.10 3.10	2.280 5.200 4.500	0.039 0.348	10.00 10.04 13.49
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C Piso 5(Ntp +12.75m) - Piso 4(Ntp +9.65m) C-D Piso 4(Ntp +9.65m) - Piso 3(Ntp +6.55m) D-E	3 6 9	0.12 0.25 0.32	3/4 3/4 3/4	18.00 18.00	0.472 0.982 1.258	2 1	0 1	1 0	0 0	1.500 2.100 1.400	0.78 0.00 0.00	0.00 3.10 3.10	2.280 5.200 4.500	0.039 0.348 0.476	10.00 10.04 13.49
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C Piso 5(Ntp +12.75m) - Piso 4(Ntp +9.65m) C-D Piso 4(Ntp +9.65m) - Piso 3(Ntp +6.55m) D-E Piso 3(Ntp +6.55) - Piso 2(Ntp +3.45m)	3 6 9 12	0.12 0.25 0.32 0.38	3/4 3/4 3/4 3/4	18.00 18.00 18.00	0.472 0.982 1.258	2 1 0	0 1 1	1 0 0	0 0 0	1.500 2.100 1.400	0.78 0.00 0.00	0.00 3.10 3.10 3.10	2.280 5.200 4.500 4.500	0.039 0.348 0.476	10.00 10.04 13.49 17.06
Punto de Agua para Grifo del Piso 6 (+15.85m) A-B Pt. Agua Grifo (+15.85m) - Piso 5(Ntp +12.75m) B-C Piso 5(Ntp +12.75m) - Piso 4(Ntp +9.65m) C-D Piso 4(Ntp +9.65m) - Piso 3(Ntp +6.55m) D-E Piso 3(Ntp +6.55) - Piso 2(Ntp +3.45m) E-F	3 6 9 12	0.12 0.25 0.32 0.38	3/4 3/4 3/4 3/4	18.00 18.00 18.00	0.472 0.982 1.258	2 1 0	0 1 1	1 0 0	0 0 0	1.500 2.100 1.400	0.78 0.00 0.00	0.00 3.10 3.10 3.10	2.280 5.200 4.500 4.500	0.039 0.348 0.476	10.00 10.04 13.49 17.06 20.82

G-H	15	0.44	1 1/4	31.00	0.583	1	1	Λ	Λ	3.400	14.18	0.00	17.580	0.237	25.41	36.11	DQI
			1 1/4			-	<u>'</u>										
H-I	15	0.44	2	48.80	0.235	0	1	1	1	4.600	6.10	0.00	10.700	0.016	25.42	36.14	PSI
I-J	15	0.44	2	48.80	0.235	0	1	0	0	3.500	23.60	0.00	27.100	0.040	25.46	36.19	PSI
J-K	15	0.44	2	48.80	0.235	1	1	1	0	5.600	19.28	0.00	24.880	0.037	25.50	36.25	PSI
V.R.4																	
K-L'	15	0.44	2	48.80	0.235	1	1	0	0	5.200	2.77	0.00	7.970	0.012	55.27	78.56	PSI
L'-L	15	0.44	2	48.80	0.235	0	0	0	0	0.000	3.09	0.00	3.090	0.005	55.27	78.57	PSI
Piso 1(Techo +2.32m) a Piso -2(Techo -4.81)																	
L-M	15	0.44	2	51.40	0.212	1	0	0	0	1.700	0.00	7.13	8.830	0.010	62.42	88.72	PSI
PERDIDAD DE CARGA EN EL TRAMO PRINCIPA	L	•			•	•	•	•	•	•		•	•	1.99			

TRAMO	U.H.	Q	D	D int	V	codo	tees	val.	reduc.	Lacc	Ltub. H	Ltub. V	Lt	hf	Р	
		lps	pulg	mm	m/s					m	m	m	m	m	m	:
		REC	ORRIDO /	AGUA PO	DTABLE	PARA ()FICIN/	AS PIS	O 9							
Piso 9 (Techo +30.25m)															16.30	23.17 PSI
A-B	27	1.48	1 1/2	38.80	1.252	0	0	1	0	0.300	1.45	0.00	1.750	4.155	20.46	29.08 PSI
B-C	54	2.03	2	48.80	1.085	0	1	0	1	4.200	0.28	0.00	4.480	0.113	20.57	29.24 PSI
Piso 9 (Techo +30.25m) a Piso 8 (Techo +26.90)																
C-D	54	2.03	2	48.80	1.085	1	0	0	0	1.700	0.00	3.56	5.260	0.132	24.26	34.49 PSI
Piso 8 (Techo +26.90m) a Piso 7 (Techo +22.69)																
D-E	108	2.59	2	48.80	1.385	0	1	0	0	3.500	0.00	4.21	7.710	0.304	28.78	40.90 PSI
Piso 7 (Techo +22.69)																
E-F	162	3.06	3	69.80	0.800	0	1	1	0	5.700	3.95	0.00	9.650	0.091	28.87	41.03 PSI
F-G	189	3.25	3	69.80	0.849	0	1	0	1	6.300	0.91	0.00	7.210	0.000	28.87	41.03 PSI
G-H	216	3.48	3	69.80	0.909	0	1	0	0	5.200	19.00	0.00	24.200	0.060	28.93	41.12 PSI
H-I	243	3.67	3	69.80	0.959	0	1	0	0	5.200	1.69	0.00	6.890	0.000	28.93	41.12 PSI
I-J	405	4.75	3	69.80	1.241	0	1	0	0	5.200	0.90	0.00	6.100	0.010	28.94	41.13 PSI
J-K	432	4.91	3	69.80	1.283	0	1	0	0	5.200	19.10	0.00	24.300	0.190	29.13	41.40 PSI
K-L	459	5.07	3	69.80	1.325	0	1	0	0	5.200	1.60	0.00	6.800	0.020	29.15	41.43 PSI
L-M	621	5.94	3	69.80	1.552	0	1	0	0	5.200	0.74	0.00	5.940	0.020	29.17	41.46 PSI
M-N	648	6.08	3	69.80	1.589	1	1	1	0	8.200	9.39	0.00	17.590	0.200	29.37	41.74 PSI
N-O	1296	9.13	4	85.40	1.594	0	1	1	1	9.000	5.00	0.00	14.000	0.373	29.74	42.27 PSI
Piso 7 (Techo +22.69) a Piso -2(Techo-4.81)	1	ı	1	1	1	1	1		1	1			ı	1	1	
O-P	1296	9.13	4	85.40	1.594	6	0	0	0	20.400	28.89	27.50	76.790	2.047	59.29	84.27 PSI

Piso -2(Techo -4.81) a Manifold (-7.34)																
P-Q	1296	9.13	4	85.40	1.594	1	0	2	0	13.32	0.00	3.32	16.643	6.874	69.48	98.77 PSI
PERDIDAD DE CARGA EN EL TRAMO PRINC	PAL													14.59		
											Ltub.					
TRAMO	U.H.	Q	D	D int	V	codo	tees	val.	reduc.	Lacc	Н	Ltub. V	Lt	hf	Р	
		lps	pulg	mm	m/s					m	m	m	m	m	m	
		RE	CORRID	O AGUA	POTABI	E PAR	A LOCA	ATARIC)							
															20.44	40.00 DCI

TRAMO	U.H.	Q	D	D int	V	codo	tees	val.	reduc.	Lacc	н	Ltub. V	Lt	hf	Р		
		lps	pulg	mm	m/s					m	m	m	m	m	m		
		RE	CORRID	O AGUA	POTABL	E PAR	A LOCA	TARIC)								
															28.14	40.00	PS
Pice 1 (Teche + 2 60m)																	
Piso 1 (Techo +2.60m) A-B	12	1.12	1 1/4	31.00	1.484	0	0	1	0	0.200	0.99	0.00	1.190	4.171	32.31	45.93	рС
Λb	12	1.12	1 1/-	01.00	1.404		U			0.200	0.00	0.00	1.100	7.171	02.01	40.00	
Piso 1 (Techo +2.60m) a Piso 2(Techo +5.20)				1								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,				
B-C	12	1.12	1 1/4	31.00	1.484	1	0	0	0	1.100	0.00	-2.60	3.700	0.282	29.99	42.63	PS
Piso 2 (Techo +5.20m)																	
C-D	12	1.12	1 1/4	31.00	1.484	6	0	0	0	6.600	18.05	0.00	24.650	1.878	31.87	45.30	PS
D-E	41	1.76	2	48.80	0.941	0	1	0	1	4.200	2.88	0.00	7.080	0.137	32.01	45.50	PS
E-F	53	2.01	2	48.80	1.075	0	1	0	0	3.500	5.35	0.00	8.850	0.218	32.23	45.81	PS
F-G	65	2.17	2	48.80	1.160	0	1	0	0	3.500	4.58	0.00	8.080	0.230	32.46	46.13	PS
G-H	77	2.31	2	48.80	1.235	0	1	0	0	3.500	5.35	0.00	8.850	0.283	32.74	46.54	PS
Piso 2 (Techo +5.20m) a Piso -2(Techo -4.81m)																	
H-I	89	2.44	2	48.80	1.305	17	1	0	0	32.400	119.02	10.01	161.430	5.706	48.45	68.88	PS
Piso -2(Techo -4.81) a V.R. 2(-5.64)																	
I-J	89	2.44	2	48.80	1.305	1	0	1	0	2.100	0.00	0.83	2.930	0.104	61.06	86.79	PS
V.R. (-5.64) a Mmanifold (-7.34)																	
J-K	89	2.44	2	48.80	1.305	0	0	2	0	6.43	0.00	1.70	8.128	6.720	69.48	98.76	PS
PERDIDAD DE CARGA EN EL TRAMO PRINCIP	AL													19.73			

ANEXO N°4: Equipo de bombeo de agua potable

EQUIPO DE BOMBEO DE AGUA POTABLE

Para el cuarto de bombas se instalarán equipos de presurización, para garantizar el adecuado caudal y presión en el sistema. La determinación de los mismos se indica a continuación.

П	1	+,	•	•	٠
\boldsymbol{L}	a	u	J;	0	

Caudal Total de Bombeo según MDS	Qmds =	13.29	lps	47.84	m3/h
Caudal Total de Bombeo Comercial (Qtb)	Qtb =	13.30	lps	47.88	m3/h
Número de Equipos de Bombeo en simultaneo	N° Bombas =	2.00	und		
Caudal c/Bomba (Qcb)	Qcb =	6.65	lps	23.94	m3/h
Presión de salida (Piso 10 - SS.HH.)	P =	21.11	mca		
Hs del aparato más desfavorable	Hs =	0.85	m		
Cota de succión	Cs =	-7.50	m (Cuarto de bombas)		
Cota del último nivel	Cf =	31.15	m (Piso 10)		
Desnivel entre pisos	h =	39.50	m		

Desnivel entre pisos+Presión de salida

	60 61	h –
1 m	60.61	h =

Pérdida de carga por fricción en tuberías y accesorios dentro del cto. de bombas

Succión

Tramo Cabecero Principal

Caudal de Bombeo (Qtb)	Q =	13.30	lps		
Diámetro de la tubería (Hierro Galvanizado SCH-					
40)	D =	6	pulg.	154.08	mm
Longitud de tubería:	$L_1 =$	2.30	m		
Longitud equivalente por accesorios	l 2=	45.00	m (ver cuadro siguiente)		

ACCESORIO	CANTIDAD	LONGITUD EQUIVALENTE	LONG. PARCIAL		
Codos	1	4.90	4.90		
Tees	0	10.00	0.00		
Ensanchamientos	0	3.82	0.00		
Reducciones	0	2.50	0.00		
Válvulas	1	1.10	1.10		
Check vertical	0	17.05	0.00		
Check horizontal	0	19.30	0.00		
Canastilla	1	39.00	39.00		
L	ONG. TOTAL, PO	R ACCESORIOS	45.00		

Longitud total:	L _T =	47.30	m		
Coef. de fricción	C =	120			
	hf =	0.22	m		
	v =	0.71	m/s		
Tramo Succión Bomba de Agua					
Caudal c/Bomba (Qcb)	Q =	6.65	lps		
Diámetro de la tubería (Acero Inox. SCH-40)	D =	3	pulg.	77.92	mm
Longitud de tubería:	L ₁ =	0.78	m		
Longitud equivalente por accesorios	L ₂ =	1.60	m (ver cuadro siguiente)		

ACCESORIO	CANTIDAD	LONGITUD EQUIVALENTE	LONG. PARCIAL
Codos	0	2.50	0.00
Tees	0	5.20	0.00
Ensanchamientos	0	1.91	0.00

	Canastilla 0 20.00 LONG. TOTAL, POR ACCESORIOS								
Canastilla	0	0.00							
Check horizontal	0	9.70	0.00						
Check vertical	0	8.52	0.00						
Válvulas	1	0.50	0.50						
Reducciones	1	1.10	1.10						

Longitud total:	L _T =	2.38	m
Coef. de fricción	C =	120	
	hf = v =	0.08 1.39	m m/s

Impulsión Bomba unitaria

Caudal de Bombeo (Qb)

Q = 6.65 lps

Diámetro de la tubería (Hierro Galvanizado SCH-

40) D = 3 pulg. 77.92 mm Longitud de tubería: $L_1 =$ 1.14 m

Longitud equivalente por accesorios $L_2 = 12.11 \text{ m (ver cuadro siguiente)}$

ACCESORIO	CANTIDAD	LONGITUD EQUIVALENTE	LONG. PARCIAL
Codos	0	2.50	0.00
Tees	0	5.20	0.00
Ensanchamientos	1	1.91	1.91
Reducciones	0	1.10	0.00
Válvulas	1	0.50	0.50
Check vertical	0	8.52	0.00
Check horizontal	1	9.70	9.70
	LONG. TOTAL, PO	R ACCESORIOS	12.11

Longitud total:	$L_T =$	13.25 m
Coef. de fricción	C =	120
	hf =	0.46 m
	v =	1.39 m/s

Impulsión Tub. Principal

Caudal de Bombeo (Qb) $Q = 13.30 \,$ lps $47.88 \,$ m3/hr Diámetro de la tubería (Hierro Galvanizado SCH-40) $D = 4 \,$ pulg. $102.26 \,$ mm Longitud de tubería: $L_1 = 13.48 \,$ m

v =

1.62 m/s

Longitud equivalente por accesorios $L_2 = 31.20$ m (ver cuadro siguiente)

ACCESORIO	CANTIDAD	LONGITUD EQUIVALENTE	LONG. PARCIAL
Codos	7	3.40	23.80
Tees	1	6.70	6.70
Ensanchamientos	0	2.55	0.00
Reducciones	0	1.60	0.00
Válvulas	1	0.70	0.70
Check vertical	0	11.36	0.00
Check horizontal	0	12.90	0.00
L	ONG. TOTAL, PO	R ACCESORIOS	31.20

Longitud total: $L_T = 44.68 \text{ m}$ Coef. de fricción C = 120 hf = 1.50 m

Perdida de carga medidor:

hf = 5.00 m

Pérdida de carga por fricción en tuberías y accesorios hasta el aparato más desfavorable (Ver Anexo N°1)

hf al punto más desfavorable hf = 11.66 m

Pérdida de carga Total

hft = 18.92 m

Altura Dinámica Total

m HDT= 79.53 <> 80.00 m

Ver Anexo N°1

Características técnicas para selección de los equipos de bombeo

Se tiene, para cada equipo de bombeo:

N.º de equipos (Bombas centrifugas)	3
Caudal de Bombeo Total (lps)	13.30
Numero de Bombas en simultaneo	2.00
Caudal c/Bomba (lps)	6.65
Altura dinámica total (m)	80.00
Potencia estimada (Hp)	11.90

Tubos de Acero Inoxidable Soldables con Costura EFW ASTM A312 SCH 10S / 40S / 80S

La tubería A312 está destinada para aplicaciones sometidas a temperatura y agentes corrosivos en general. Longitud 6m. Acabado de extremos planos y roscados NPT ASME B1.20.1.

Test de Tensión											
Material	Carg Rotura	Lími Elástico									
	psi	MPa	psi	MPa							
304L	70000	485	25000	170							
304	75000	515	30000	205							
316L	70000	485	25000	170							
316	75000	515	30000	205							

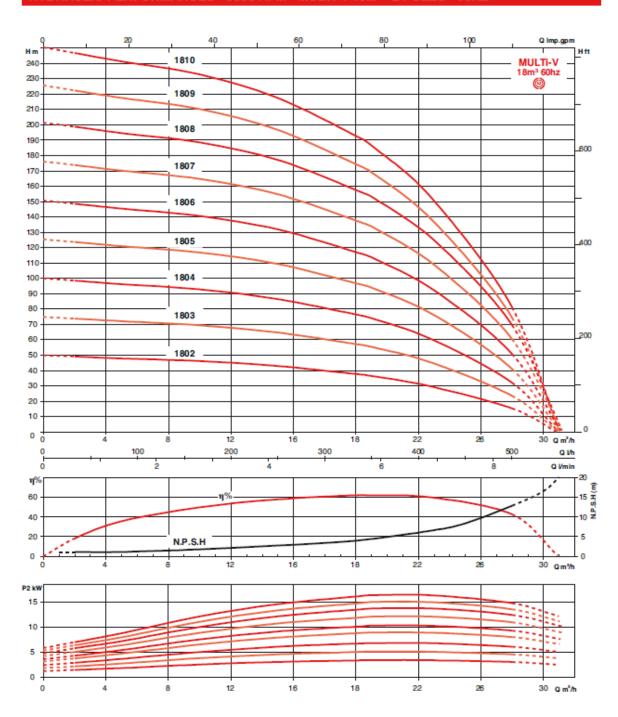
Difmatus	Diámetro Dimen. Nominal Exterior		H-10S	SCH-	405	SCH-80S				
Nominal			Peso	Espesor Nominal	Peso	Espesor Nominal	Peso			
Pulgadas	mm	mm	kg/m	mm	kg/m	mm	kg/m			
1/4	13.7	1.65	0.49	2.24	0.63	3.02	0.80			
3/8	17.1	1.65	0.63	2.31	0.85	3.20	1.09			
1/2	21.3	2.11	1.00	2.77	1.27	3.73	1.62			
3/4	26.7	2.11	1.28	2.87	1.69	3.91	2.20			
1	33.4	2.77	2.09	3.38	2.50	4.55	3.24			
11/4	42.2	2.77	2.69	3.56	3.39	4.85	4.47			
11/2	48.3	2.77	3.11	3.68	4.05	5.08	5.41			
2	60.3	2.77 3.93		3.91	5.45	5.54	7.49			
21/2	73.0	3.05	5.27	5.16	8.64	7.01	11.42			
3	88.9	3.05	6.46	5.49	11.30	7.62	15.28			
4	114.3	3.05	8.37 6.02		16.09	8.56	22.34			
5	141.3	3.40	11.6	6.56 21.8		9.53	31.0			
6	168.3	3.40	13.85	7.11	28.28	10.97	42.60			
8	219.1	3.76	19.98	8.18	42.57	12.70	64.69			
10	273.0 4.19		27.88	9.27	60.36	12.70	81.6			
12	12 323.8 4.57		36.08	9.53	73.9	12.70	97.4			
14	355.6	4.78	41.3	9.53	81.3	12.70	107.4			
16	406.4	4.78	47.3	9.53	93.3	12.70	123.3			
18	457.2	4.78	53.3	9.53	105.2	12.70	139.2			
20	508	5.54	68.8	9.53	117.2	12.70	155.1			
22	558.8	5.54	75.5	9.53	129.1	12.70	171.1			
24	609.6	6.35	94.5	9.53	141.1	12.70	187.1			

^{*} Fotos y datos referenciales. No aceptamos responsabilidad por usos incorrectos o mal interpretaciones de estos datos.

Presión de Trabajo para Tubos de Acero Inoxidable Soldables EFW ASTM A312 316 / 316L SCH 5S / 10S

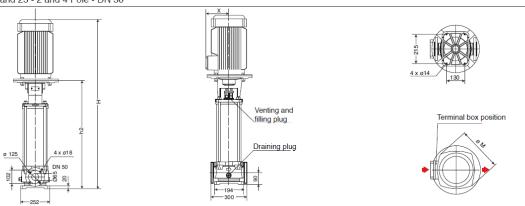
TEM	IPERAT C.	URE	- 254 to 149	204	260	315	343	371	399	427	454	482	510	538	565	593	621	649	676	704	732	760	788	815
	MAX STRESS		20000	187700	17500	16400	16200	16000	15600	15200	14900	14600	14400	13800	12200	9700	7700	6000	4700	3700	2900	2300	1800	1400
NOM. PIPE SIZE	E SCH. NOM. ALLOWABLE WORKING PRESSURES PSIG																							
1/2	55	.065	1809	1679	1560	1463	1430	1398	1365	1343	1311	1278	1246	1213	1170	1105	953	693	509	379	271	195	141	108
	105	.083	2310	2144	1992	1888	1826	1785	1743	1715	1674	1632	1591	1549	1494	1411	1217	885	650	484	346	249	180	138
94	55	.065	1447	1343	1248	1170	1144	1118	1092	1075	1049	1023	997	971	936	884	763	555	407	303	217	158	113	87
	105	.063	1848	1715	1594	1494	1461	1428	1394	1372	1339	1306	1273	1239	1195	1129	974	708	520	387	277	199	144	111
1	55	.065	1156	1073	997	934	913	893	672	858	837	817	796	775	747	706	609	443	325	242	173	125	90	69
	105	.109	1938	1799	1671	1587	1532	1497	1462	1439	1404	1389	1335	1300	1253	1184	1021	743	545	406	290	209	151	116
144	55	.065	915	850	789	740	724	707	691	680	663	647	630	614	592	559	482	351	258	192	137	55	71	55
	105	.109	1535	1425	1324	1241	1213	1186	1158	1140	1112	1085	1057	1030	993	938	809	588	432	322	230	165	120	92
146	55	.065	800	742	690	647	632	618	603	594	580	565	551	538	517	489	421	307	225	168	120	85	62	48
	105	.109	1341	1245	1157	1084	1060	1038	1012	996	972	948	924	900	887	819	707	514	377	281	201	145	104	80
2	55	.065	640	594	552	517	506	494	483	475	464	452	441	429	414	391	337	245	180	134	96	69	5D	38
	105	.109	1073	996	925	867	848	829	810	797	777	758	739	720	694	655	565	411	302	225	161	116	84	64
21/2	55	.063	675	626	582	546	534	521	509	501	489	477	465	453	437	412	356	259	190	141	101	73	53	40
	105	.120	976	906	841	789	771	754	736	725	707	690	672	654	631	596	514	374	275	205	146	105	76	58
3	55	.063	554	515	478	448	438	428	418	412	402	392	382	372	359	339	292	212	156	116	83	60	43	33
	105	.120	802	744	691	648	634	619	605	595	581	566	552	538	518	490	422	307	226	168	120	86	62	48
31/2	55	.083	485	450	418	392	383	375	366	360	352	343	334	325	314	296	256	186	137	102	73	52	38	29
	105	.120	701	651	605	567	554	542	529	521	506	496	483	470	454	428	370	269	197	147	105	76	55	42
4	55	.063	431	400	372	349	341	333	325	320	312	305	297	289	279	263	227	165	121	90	65	46	34	26
	105	.120	623	579	538	504	493	482	470	463	452	441	429	418	403	381	329	239	175	131	93	67	49	37
5	55	.109	458	425	395	370	362	354	346	340	332	324	315	307	296	280	241	176	129	96	69	49	36	27
	105	.134	563	523	486	455	445	435	425	418	408	398	388	378	364	344	297	216	158	118	84	ଗ	44	34
6	55	.109	385	357	332	311	304	297	290	286	279	272	265	258	249	235	203	147	108	81	58	41	30	23
	105	.134	473	439	408	362	374	365	357	351	343	334	326	317	306	289	249	181	133	99	71	51	37	28
8	55	.109	295	274	255	239	234	228	223	219	214	209	203	198	191	180	158	113	83	62	44	32	23	18
	105	.148	401	372	346	324	317	310	303	298	291	263	276	269	259	245	211	154	113	84	60	43	31	24
10	55	.134	291	270	251	236	230	225	220	216	211	206	201	195	188	178	154	112	82	61	44	31	23	17
	105	.165	359	333	309	290	284	277	271	266	260	254	247	241	232	219	189	138	101	75	54	39	28	21
12	55	.156	286	266	247	231	226	221	216	212	207	202	197	192	185	175	151	110	81	6D	43	31	22	17
	105	.180	330	308	285	267	261	255	249	245	239	233	227	221	213	202	174	126	93	69	49	36	26	20
14	55	.156	261	242	225	211	206	201	197	193	189	184	179	175	168	159	137	100	73	55	39	28	20	16
	105	.188	314	291	271	254	248	243	237	233	227	222	216	211	203	192	165	120	88	66	47	34	24	19
16	55	.165	241	224	208	195	191	186	182	179	175	170	168	162	156	147	127	92	68	51	36	26	19	14
	105	.188	275	255	237	222	217	212	207	204	199	194	189	184	178	168	145	105	77	58	41	30	21	16
18	55	.165	214	199	185	173	169	166	162	159	155	151	148	144	139	131	113	85	60	45	32	23	17	13
	105	.188	244	227	211	197	193	189	184	181	177	173	168	164	158	149	129	94	69	51	37	26	19	15
20	55	.188	220	204	190	178	174	170	166	163	159	155	151	147	142	134	116	84	62	46	33	24	17	13
	105	.218	255	237	220	206	201	197	192	189	185	180	175	171	165	156	134	96	72	53	38	27	20	15
24	55	.218	212	197	183	172	168	164	160	158	154	150	146	142	137	130	112	81	60	45	32	23	17	13
	105	.250	244	226	210	197	193	188	184	181	176	172	168	163	158	149	128	93	69	51	36	26	19	15

Presión de Trabajo para Tubos de Acero Inoxidable Soldables EFW ASTM A312 316 / 316L SCH 40S / 80S


TEM	IPERAT °C.	URE	- 254 to 149	204	260	315	343	371	399	427	454	482	510	538	565	593	621	649	676	704	732	760	788	815
	MAX STRESS		20000	18700	17500	16400	16200	16000	15600	15200	14900	14600	14400	13800	12200	9700	7700	6000	4700	3700	2900	2300	1800	1400
NOM. PIPE SIZE	SCH. NO.	NOM. WALL																						
1/2	405	.109	3034	2816	2616	2453	2398	2344	2289	2253	2198	2144	2089	2035	1962	1853	1599	1163	854	636	454	327	236	182
	805	.147	4092	3796	3528	3306	3234	3161	3067	3038	2965	2891	2816	2744	2646	2499	2158	1568	1152	858	613	441	319	245
34	405	.113	2516	2335	2170	2034	1989	1944	1898	1888	1823	1778	1733	1687	1627	1537	1326	964	706	527	377	271	196	151
	805	.154	3429	3183	2957	2772	2710	2649	2587	2546	2485	2423	2361	2300	2218	2094	1807	1314	965	719	513	370	267	205
1	405	.133	2365	2195	2039	1912	1869	1827	1784	1756	1713	1671	1628	1586	1529	1444	1246	906	666	496	354	255	184	142
	805	.179	3183	2954	2744	2573	2516	2458	2401	2363	2306	2249	2192	2134	2058	1944	1677	1220	896	667	476	343	248	191
11/4	405	.140	1972	1830	1700	1594	1559	1523	1488	1464	1429	1393	1358	1322	1275	1204	1039	756	555	413	295	213	153	118
	805	.191	2690	2497	2320	2175	2126	2078	2030	1997	1949	1901	1852	1804	1740	1643	1418	1031	757	564	403	290	209	161
144	405	.145	1784	1656	1539	1442	1410	1378	1346	1325	1293	1261	1229	1197	1154	1090	940	684	502	374	267	192	139	107
	805	.200	2461	2284	2122	1969	1945	1901	1857	1827	1763	1739	1695	1651	1592	1503	1297	943	693	516	368	265	192	147
2	405	.154	1516	1407	1307	1226	1198	1171	1144	1126	1098	1071	1044	1017	980	926	799	581	427	318	227	163	118	91
	805	.218	2146	1992	1850	1735	1696	1658	1619	1593	1555	1516	1478	1439	1388	1311	1131	822	604	450	321	231	167	129
21/2	405	203	1651	1532	1423	1335	1305	1275	1246	1226	1196	1166	1137	1107	1068	1008	67D	633	465	346	247	178	129	99
	805	276	2244	2083	1935	1814	1774	1734	1693	1667	1626	1586	1548	1505	1452	1371	1183	860	632	470	336	242	175	134
3	405	.216	1443	1339	1244	1166	1140	1115	1069	1071	1045	1020	994	968	933	881	760	553	406	302	216	156	112	86
	805	.300	2004	1860	1728	1620	1584	1548	1512	1488	1452	1416	1380	1344	1296	1224	1056	766	564	420	300	216	156	120
31/2	405	.226	1321	1226	1139	1068	1044	1020	997	961	957	933	910	886	854	807	696	506	3772	277	198	142	103	79
	805	.318	1859	1725	1603	1503	1469	1438	1402	1380	1347	1313	1280	1247	1202	1135	979	712	523	390	278	200	145	111
4	405	237	1231	1143	1062	995	973	951	929	914	892	870	848	826	796	752	649	472	347	258	184	133	96	74
	805	337	1751	1625	1510	1415	1384	1352	1321	1300	1269	1237	1206	1774	1132	1069	923	671	493	367	262	189	138	105
5	405	.258	1084	1006	935	877	857	838	818	805	786	766	747	727	701	662	571	416	305	227	162	117	84	65
	805	.375	1576	1463	1359	1274	1248	1217	1189	1170	1142	1114	1085	1057	1019	963	830	604	444	330	236	170	123	94
6	405	.280	988	917	852	799	781	763	746	734	716	698	680	663	639	604	521	379	278	207	148	107	77	59
	805	.432	1525	1415	1315	1232	1205	1178	1150	1132	1105	1077	1050	1022	986	931	803	584	429	320	228	164	119	91
8	405	.322	873	810	753	706	690	674	659	648	632	617	601	585	564	533	460	335	246	183	131	94	68	52
	805	.500	1355	1258	1169	1096	1071	1047	1023	1006	962	958	933	909	877	826	714	519	381	284	203	146	106	81
10	405	.385	794	737	885	842	627	613	599	589	575	561	547	532	513	485	418	304	223	166	119	86	62	48
	805	.500	1087	1009	938	879	860	840	820	807	788	768	749	729	703	664	573	417	306	228	163	117	85	65
12	405	.375	688	638	593	556	544	531	519	511	498	486	474	461	445	420	362	264	194	144	103	74	54	41
	805	.500	917	851	791	741	725	708	692	681	664	648	631	615	593	560	483	351	258	192	137	99	71	55
14	405	.375	626	581	540	506	495	484	473	465	454	443	431	420	405	383	330	240	176	131	94	68	49	38
	805	.500	835	775	720	675	660	645	630	620	605	590	575	560	540	510	440	320	235	175	125	90	65	50
16	405	.375	548	509	473	443	433	423	413	407	397	387	377	368	354	335	289	210	154	115	82	59	43	33
	805	.500	731	678	630	591	576	564	551	543	529	516	503	490	473	446	385	260	206	153	109	79	57	44
18	405	.375	487	452	420	394	385	376	388	362	353	344	335	327	315	298	257	187	137	102	73	53	38	29
	805	.500	649	603	560	525	513	502	490	482	471	459	447	436	420	397	342	249	183	136	97	70	51	39
20	405	.375	438	407	378	354	347	339	331	326	318	310	302	294	284	268	231	168	123	92	66	47	34	26
	805	.500	585	543	504	473	462	452	441	434	424	413	403	392	378	357	306	224	165	123	88	63	46	35
24	405	.375	365	339	315	295	289	282	276	271	265	258	252	245	236	223	193	140	103	77	55	39	28	22
	805	.500	487	452	420	394	385	376	368	362	353	344	335	327	315	298	257	187	137	102	73	53	38	29

ANEXO N°6: Ficha técnica de bomba

Caption : Motor 2 pole 🔞


MULTI-V

HYDRAULIC PERFORMANCES - 3500 RPM - MULTI-V 18M3 - 2 POLES - 60HZ

MULTI-V 1800 ELECTRICAL DATA AND DIMENSIONS - 2 AND 4 POLE 🚳

• PN 16 and 25 - 2 and 4 Pole - DN 50

MULTI-V 1800 ELE	CTRIC	CAL DA	ATA AN	D DIM	ENSIC	NS - 2	POLE	(
Order reference	P2	Pmax	Motor	Motor	I Maxi	I Maxi	l Maxi	Н	H2	М	Х	Mass (with
			housing	flange	A 220V	A 380V	A 440V					packaging)
	kW				(A)	(A)	(A)	mm	mm	mm	mm	kg
3~ (2 poles)												'
MULTI-V1802-FGE-T/2/6	3,7	25	100	FT130		7,2	7,3	724	429	217	160	87
MULTI-V1803-FGE-T4/2/6	5,5	25	112	FT130		11,2	10,2	754	429	235	168	91,3
MULTI-V1803N-FGE-T4/2/6	5,5	25	132	FF265		11,7	10,2	807	449	265	179	100,7
MULTI-V1804-FGE-T4/2/6	7,5	25	132	FF265		15	13,9	878,5	483,5	265	179	113,3
MULTI-V1805-FGE-T4/2/6	9	25	132	FF265		16,9	15,9	917	518	300	179	130,3
MULTI-V1805N-FGE-T4/2/6	11	25	160	FF300		21,2	19,9	1024	548	325	208	151,3
MULTI-V1806-FGE-T4/2/6	11	25	132	FF265		20,4	19,9	951,5	552,5	300	179	132,3
MULTI-V1806N-FGE-T4/2/6	11	25	160	FF300		21,2	19,9	1058,5	582,5	325	208	153,3
MULTI-V1807-FGE-T4/2/6	15	25	160	FF300		28	25,7	1127,5	651,5	325	208	167
MULTI-V1808-FGE-T4/2/6	15	25	160	FF300		28	25,7	1127,5	651,5	325	208	167,7
MULTI-V1809-FGE-T4/2/6	18,5	25	160	FF300		35	32,2	1215,5	720,5	325	235	186,4
MULTI-V1802-OGE-T/2/6	3,7	16	100	FT130		7,2	7,3	724	429	217	160	87
MULTI-V1803-OGE-T4/2/6	5,5	16	112	FT130		11,2	10,2	754	429	235	168	91,3
MULTI-V1803N-OGE-T4/2/6	5,5	16	132	FF265		11,7	10,2	807	449	265	179	100,7
MULTI-V1804-OGE-T4/2/6	7,5	16	132	FF265		15	13,9	878,5	483,5	265	179	113,3
MULTI-V1805-OGE-T4/2/6	9	16	132	FF265		16,9	15,9	917	518	300	179	130,3
MULTI-V1805N-OGE-T4/2/6	11	16	160	FF300		21,2	19,9	1024	548	325	208	151,3
MULTI-V1806-OGE-T4/2/6	11	16	132	FF265		20,4	19,9	951,5	552,5	300	179	132,3
MULTI-V1806N-OGE-T4/2/6	11	16	160	FF300		21,2	19,9	1058,5	582,5	325	208	153,3
MULTI-V1802-OXV-T/2/6	3,7	16	100	FT130		7,2	7,3	724	429	217	160	87
MULTI-V1803-OXV-T4/2/6	5,5	16	112	FT130		11,2	10,2	754	429	235	168	91,3
MULTI-V1803N-OXV-T4/2/6	5,5	16	132	FF265		11,7	10,2	807	449	265	179	100,7
MULTI-V1804-OXV-T4/2/6	7,5	16	132	FF265		15	13,9	878,5	483,5	265	179	113,3
MULTI-V1805-OXV-T4/2/6	9	16 16	132 160	FF265 FF300		16,9 21.2	15,9	917	518	300 325	179 208	130,3 151.3
MULTI-V1805N-OXV-T4/2/6			132	FF265			19,9	1024 951.5	548 552 5	300	179	
MULTI-V1806-OXV-T4/2/6 MULTI-V1806N-OXV-T4/2/6	11 11	16 16	160	FF300		20,4 21.2	19,9 19.9	1058.5	582.5	325	208	132,3 153.3
MULTI-V1806N-UXV-14/2/6 MULTI-V1802-FXV-T/2/6										217	160	153,3 87
MULTI-V1802-FXV-172/6 MULTI-V1803-FXV-T4/2/6	3,7 5.5	25 25	100 112	FT130 FT130		7,2 11.2	7,3 10.2	724 754	429 429	235	168	91.3
MULTI-V1803-FXV-T4/2/6	5.5	<u>25</u> 25	132	FF265		11,2	10,2	807	449	265	179	100.7
MULTI-V1803N-FXV-14/2/6	7.5	25	132	FF265		15	13.9	878.5	483.5	265	179	113.3
MULTI-V1804-FXV-14/2/6	9	25 25	132	FF265		16.9	15,9	917	518	300	179	130.3
MULTI-V1805-FXV-14/2/6	11	25	160	FF300		21.2	19.9	1024	548	325	208	151.3
MULTI-V1806-FXV-T4/2/6	11	25	132	FF265		20.4	19.9	951.5	552.5	300	179	132.3
MULTI-V1806N-FXV-T4/2/6	11	25	160	FF300		21.2	19,9	1058.5	582.5	325	208	153.3
MULTI-V1806N-FXV-14/2/6	15	25	160	FF300		28	25.7	1127.5	651.5	325	208	167
MULTI-V1807-FXV-T4/2/6	15	25	160	FF300		28	25.7	1127,5	651.5	325	208	167.7
MULTI-V1808-FXV-14/2/6	18.5	25	160	FF300		35	32.2	1215.5	720.5	325	235	186.4
WIULTI-V 1003-1 AV-14/2/0	10,0	20	100	11300		33	32,2	1210,0	120,0	323	233	100,4

MULTI-V 1800 ELECTRICAL DATA AND DIMENSIONS - 4 POLE (6)												
Order reference	P2	Pmax	Motor housing	Motor flange	I Maxi A 220V	l Maxi A 380V	l Maxi A 440V	Н	H2	М	X	Mass (with packaging)
	kW				(A)	(A)	(A)	mm	mm	mm	mm	kg
3~ (4 poles)												
MULTI-V1807-OGE-T/4/6	1,5	16	90	FT115	5,4	3,2	2,8	858,5	591,5	193	151	81
MULTI-V1810-OGE-T/4/6	2.2	16	100	FT130	8,12	4,7	4,2	962,5	670,5	217	161	98,3
MULTI-V1812-OGE-T/4/6	3	16	100	FT130	10,7	6,2	5,7	1031,5	739,5	217	161	105,7
MULTI-V1814-OGE-T/4/6	4	16	112	FT130	14,4	8,3	7,6	1213,5	877,5	232	168	123,7
MULTI-V1807-OXV-T/4/6	1,5	16	90	FT115	5,4	3,2	2,8	858,5	591,5	193	151	81
MULTI-V1810-OXV-T/4/6	2,2	16	100	FT130	8,12	4,7	4,2	962,5	670,5	217	161	98,3
MULTI-V1812-OXV-T/4/6	3	16	100	FT130	10,7	6,2	5,7	1031,5	739,5	217	161	105,7
MULTI-V1814-OXV-T/4/6	4	16	112	FT130	14.4	8.3	7.6	1213.5	877.5	232	168	123.7

38