UNIVERSIDAD NACIONAL TECNOLOGICA DE LIMA SUR

FACULTAD DE INGENIERÍA Y GESTIÓN ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA Y ELÉCTRICA

"DISEÑO Y SELECCIÓN DE EQUIPOS ECOLOGICOS DE UNA CÁMARA DE REFRIGERACIÓN PARA LA CONSERVACIÓN DE CARNE ROJA DE 16000 KG UTILIZANDO EL SOFTWARE SR2015 Y COOLSELECTOR2"

TRABAJO DE SUFICIENCIA PROFESIONAL

Para optar el Título Profesional de

INGENIERO MECÁNICO ELECTRICISTA

PRESENTADO POR EL BACHILLER

HILARIO CASO, LEONARDO DAVID

ASESOR

FLORES VELASQUEZ, CARLOS

Villa El Salvador

2019

DEDICATORIA:

A mis padres, por su apoyo en todo momento.

A mi abuela Valeriana, por acogerme en su hogar en mi tiempo de preparación.

A mi casa de estudio UNTELS.

A mis profesores, por transmitir sus conocimientos en mí.

A mis amigos y familiares, quienes forman parte de mi vida.

AGRADECIMIENTO:

A Dios por darme salud, capacidad de aprender y fortaleza para afrontar los retos y obstáculo en la vida. A mi familia y amigos, por el apoyo constante que he tenido de cada uno de ellos.

Un agradecimiento especial al ingeniero Carlos Flores Velásquez por el apoyo en la realización de este trabajo.

ÍNDICE

.
Ш
VI
/
'III
. 1
. 1
. 1
. 2 . 2 . 2
. 2
.3
. 4
. 4
.5 .5 .6
` ,

	2.2.6.Componentes principales de un sistema básico de refrigeración por compresión.	7
	2.2.7.Componentes en una cámara de refrigeración	8
2.3	3.Definición de términos básicos	. 13
CA	APÍTULO III: DESARROLLO DEL TRABAJO DE SUFICIENCIA PROFESIONAL	15
	1.Modelo de solución propuesto	. 15
	2.Resultados 3.2.1.Resultados obtenidos en cálculos. 3.2.2.Esquema técnico de refrigeración. 3.2.3.Circuito técnico de refrigeración. 3.2.4.Diseño de la cámara de refrigeración.	. 32 . 34 . 35
CC	DNCLUSIONES	. 40
RE	ECOMENDACIONES	. 41
BII	BLIOGRAFÍA	. 42
ΔN	JEXOS	45

LISTADO DE FIGURAS

Figura 1. Unidad condensadora	8
Figura 2. Evaporador Mipal	9
Figura 3. Válvulas solenoide	9
Figura 4. Válvula de expansión termostática	. 10
Figura 5. Presostato	. 10
Figura 6. Termómetro digital	. 11
Figura 7. Separador de aceite	. 11
Figura 8. Visor de líquido	. 12
Figura 9. Cálculo de carga térmica	. 18
Figura 10. Marca Danfoss	
Figura 11. Designación de modelos	. 20
Figura 12. Selección de unidad condensadora	. 21
Figura 13. Selección de evaporador	. 22
Figura 14. Selección de válvula de expansión termostática	. 24
Figura 15. Selección de válvula solenoide	. 27
Figura 16. Selección de diámetro de tubería de succión	. 29
Figura 17. Selección de diámetro de tubería de líquido	30
Figura 18. Esquema técnico de refrigeración	. 34
Figura 19. Circuito técnico de refrigeración	. 35
Figura 20. Cámara de refrigeración - Vista de planta	. 36
Figura 21. Cámara de refrigeración - Corte A-A (Vista de elevación)	. 36
Figura 22. Cámara de refrigeración - Corte B-B (Vista de elevación)	. 37
Figura 23. Detalle de empotramiento del panel	. 37
Figura 24. Detalle encuentro de esquina panel techo y panel muro	. 38
Figura 25. Detalle encuentro de esquina panel muro y panel muro	. 38
Figura 26. Detalle de zócalos sanitarios	. 39

LISTADO DE TABLAS

Tabla 1 Conservación de alimentos fríos	6
Tabla 2 Diferencial de temperatura	17
Tabla 3 Selección de espesor de panel termoaislante	17
Tabla 4 Selección de unidad condensadora, refrigerante R-507	20
Tabla 5 Selección de evaporador	22
Tabla 6 Dimensiones de tuberías - línea de succión	28
Tabla 7 Dimensiones de tuberías - línea de líquido	30

INTRODUCCIÓN

Las cámaras de refrigeración tienen diferentes aplicaciones como la conservación de los alimentos (carne, pollo, pescado, verduras, frutas, lácteos, etcétera.), y otras áreas (floristería, farmacéutica, ingeniería, informática, etcétera).

Para conservar los alimentos perecederos se requiere la temperatura adecuada en el tiempo necesario. Las cámaras de refrigeración pueden ser de distintas medidas y capacidades para almacenar cualquier tipo de producto a conservar.

Para que la conservación resulte eficiente es necesario tener en cuenta el tipo de producto a conservar, la cantidad de producto, las dimensiones de la cámara de refrigeración, temperatura de ingreso del producto y temperatura de conservación.

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la Realidad Problemática

Las distribuidoras de carne, los centros comerciales, supermercados, restaurante, hoteles, entre otros; necesitan conservar y congelar sus productos, debido a que el tiempo de duración de la carne es corta y se malograría, perdiendo dinero y producto.

Cocinar con carne que no ha pasado por una cámara de refrigeración, nos produce enfermedades como hepatitis. La importancia de tener cámaras de refrigeración en entidades que distribuye y ofrece carne, es de mucha importancia.

1.2. Justificación del Problema

- <u>TECNOLÓGICO</u>: Las empresas distribuidora o comercializadora de carne necesitan equipos frigoríficos para su conservación, la selección adecuada de los equipos es de importancia en estas empresas, un buen funcionamiento de estos logra conservar los productos evitando la descomposición de manera rápida.
- AMBIENTAL: La liberación de gases que contiene clorofluorocarbono, es el principal problema en la destrucción de la capa de ozono. Mediante el protocolo de Montreal, el uso de refrigerantes que contiene CFC se está dejando de usar, en reemplazo se está utilizando refrigerantes ecológicos que evita el incremento del agujero en la capa de ozono.
- <u>SEGURIDAD</u>: Teniendo la seguridad y garantía de tener una cámara de refrigeración, cumpliendo con las pruebas y parámetros respectivos. Las

empresas distribuidoras y/o los centros comerciales podrán ofrecer sus productos ganando clientes y ser reconocido por la población por el buen producto que ofrece.

 <u>LEGAL</u>: El gas refrigerante que se utilizará respetará lo que indica el protocolo de Montreal, los materiales a utilizar y el equipo a instalar cumplirá con las normas que se requieran para tener excelentes resultados y garantizar el buen diseño y funcionamiento de la cámara de refrigeración.

1.3. Delimitación del Proyecto

1.3.1. Teórica.

El proyecto está delimitado en el diseño de la cámara de refrigeración y selección de los equipos de refrigeración.

1.3.2. Temporal.

El proyecto se está desarrollando entre el mes de octubre y diciembre del 2019.

1.3.3. Espacial.

El proyecto se ubica en la avenida Aviación, distrito de San Isidro, Lima. Restaurante de pizza.

1.4. Formulación del Problema

1.4.1. Problema General.

• ¿Cómo diseñar una cámara de refrigeración para conservar carne roja?

1.4.2. Problemas específicos.

- ¿Cuál será la carga térmica en la cámara de almacenamiento para la conservación de la carne?
- ¿Cuál será la temperatura adecuada que se utilizará en la cámara de refrigeración?
- ¿Qué tipo de refrigerante es el adecuado a utilizar?

1.5. Objetivos

1.5.1. Objetivo General.

 Diseñar una cámara de refrigeración para que la carne se encuentre en óptimas condiciones.

1.5.2. Objetivos Específicos.

- Calcular la carga térmica en la cámara teniendo en cuenta la capacidad de carne que se almacenará.
- Definir la temperatura óptima para la conservación de las carnes.
- Seleccionar el adecuado tipo de refrigerante necesario.

CAPÍTULO II: MARCO TEÓRICO

2.1. Antecedentes

Céspedes, R. (2012) realizó la Tesis: "Sistema de refrigeración con capacidad de bodega para almacenar 300kg de pescado", para optar el título de Ingeniero Mecánico en la Pontificia Universidad Católica del Perú. La pesca artesanal en Pucallpa es una actividad fundamental en los pobladores de la zona. El medio que se desplaza los pescadores artesanales se llama pekepekes, son canoas que utilizan motores de combustión interna. El método de conservación utilizado por los pescadores es transportar bloques de hielo en sus pekepekes. Para una mejor conservación de sus capturas, se propone diseñar un sistema de refrigeración de 1.45m de largo, 0.86m de ancho y 1.106m de alto que irá montado en un pekepeke.

Catucuago y Tipán (2015) realizó la tesis: "Diseño y construcción de una cámara frigorífica modular de 9.6 m³ para conservación de vacunas", para obtener el título de Ingeniero Mecánico en la Universidad Politécnica Salesiana. La finalidad del proyecto es diseñar y construir una cámara frigorífica para conservar vacunas, realizando un estudio de las vacunas, los tipos que existe y la temperatura óptima para la conservación. Estableciendo un rango de temperatura para elegir la adecuada.

Lasso, B. (2015) realizo la tesis: "Diseño de una cámara frigorífica a ser montada en los camiones de la cooperativa de transporte de cárnicos "EL CAMAL" de la ciudad de Riobamba", para obtener el título de Ingeniero en la Escuela Superior Politécnica de Chimborazo. Este proyecto ocurre tras la necesidad de mejorar la higiene y calidad del producto cárnico al ser transportado. La cooperativa de transporte de cárnicos EL CAMAL realizará un estudio para implementar cámaras frigoríficas en cada vehículo, brindando un mejor servicio evitando el deterioro del producto y protegiendo de la contaminación.

Huertas, S. (2013) realizó la tesis: "Diseño de sistema frigorífico para el control de la maduración de una carga de plátanos", para la obtención del título de Ingeniero Mecánico en la Universidad de San Carlos de Guatemala. Se diseñará un sistema de refrigeración especializado, para eso se requiere el manejo de la humedad, el control de temperatura y aportación de etileno dependiendo los requerimientos de cada tipo de fruta. Se desea lograr controlar la maduración del producto sabiendo la temperatura adecuada y evitar daños por frio.

2.2. Bases Teóricas

2.2.1. Conservación de alimentos.

Se entiende por conservación de alimentos, es un proceso en el cual se almacena el producto y se puede consumir en un tiempo largo (Conceptodefinicion, 2019).

2.2.2. Tipos de carne.

La carne se la puede clasificar en dos grandes grupos, según su color: carnes rojas (vaca, cerdo, caballo y ovina) y carnes blancas (pollo, pescado y conejo) (Enciclopedia de Clasificaciones, 2017).

2.2.3. Temperaturas de conservación de la carne.

Tabla 1
Conservación de alimentos fríos

Alimentos	Tipo	Refrigerador (40 °F o menos)	Congelador (0 °F o menos)
	Tocino	1 semana	1 mes
Tocino y embutidos	Embutidos crudos, de pollo, pavo, cerdo o res	De 1 a 2 días	De 1 a 2 meses
	Embutidos bien cocidos, de pollo, pavo, cerdo o res	1 semana	De 1 a 2 meses
Hamburguesa y otras preparaciones con carne molida	Hamburguesa, carne molida de vaca, pavo, ternera, cerdo, cordero y mezclas de todas ellas	De 1 a 2 días	De 3 a 4 meses
	Filetes	De 3 a 5 días	De 4 a 12 meses
Carne fresca de res, ternera,	Chuletas	De 3 a 5 días	De 4 a 12 meses
cordero y cerdo	Carnes asadas	De 3 a 5 días	De 4 a 12 meses
Carne de ave fresca	Pollo o pavo, entero	De 1 a 2 días	1 año
	Pollo o pavo, en trozos	De 1 a 2 días	9 meses

Fuentes: (Foodsafety.gov, 2019)

2.2.4. Funcionamiento de los sistemas de refrigeración.

Los cuerpos que están con temperaturas encima del cero absoluto tienen "energía interna", la cual la pueden transmitir hacia otro cuerpo que está a menor temperatura, a este tipo de energía la denominamos calor (Expofrío, 2015).

Refrigerar es lograr que una sustancia alcance una temperatura menor a la del medio que la rodea, o con la que está en contacto (Expofrío, 2015).

Hay distintos valores de temperatura para la conservación de un alimento perecible, aparecen en tablas y manuales que son resultado de las pruebas y experiencias de muchos años (Expofrío, 2015).

El objetivo es lograr que se realice la transferencia de calor y disminuir el calor del producto a un nivel deseado, alargando el tiempo de consumo y uso del producto (Expofrío, 2015).

2.2.5. Cámara de refrigeración.

Una cámara de refrigeración es un cuarto donde se mantiene a bajas temperaturas productos perecederos para evitar su descomposición de manera rápida (González de la Cruz & González G., 2006).

Las cámaras de refrigeración pueden clasificar en tres grupos: cámaras de productos refrigerados de 0°C a +4°C para almacenar a corto tiempo, Cámara de congelado de -18°C a -30°C para largos tiempo de almacenamiento, y cámara de atmosfera controlada donde se controla la temperatura y los gases ambientes, añadiendo aditivos como el nitrógeno y el etileno (González de la Cruz & González G., 2006).

2.2.6. Componentes principales de un sistema básico de refrigeración por compresión.

• Evaporador:

Es un elemento de intercambiador de calor, adsorbe calor del medio en que se encuentre dejando el ambiente enfriando (Vásquez Benavides, 2013).

El evaporador presenta tubos con aletas, aumentando la superficie de intercambio de calor (Vásquez Benavides, 2013).

Compresor:

Su función es absorber el vapor que proviene del evaporador y expulsarlo hacia el condensado (Vásquez Benavides, 2013).

Los compresores más usados son los de tipo centrifugo, de pistón y los de tipo tornillo (Vásquez Benavides, 2013).

Condensador:

La función del condensador es extraer el calor del refrigerante y expulsarlo al medio ambiente, este calor es la suma del calor absorbido por el evaporador y del trabajo realizado por el compresor (Vásquez Benavides, 2013).

Control de fluido:

Su función es regular una diferencia de presión entre los lados de alta y baja en el sistema de refrigeración (Vásquez Benavides, 2013).

2.2.7. Componentes en una cámara de refrigeración.

Unidad condensadora

Es el equipo más importante del sistema de refrigeración y contiene al compresor, condensador y accesorios como el separador de aceite, acumulador de succión (Rivera Mata, 2018).

Figura 1. Unidad condensadora

Fuente: (Marketing Industrial, 2016)

Evaporador

Es un intercambiador de calor, el refrigerante que circula en el evaporador absorbe el calor del medio en que se encuentra cambiando su estado a vapor y logrando enfriar el recinto (Zelsio, 2016).

Figura 2. Evaporador Mipal

Fuente: (Mipal, 2018)

Válvula de solenoide

Es un elemento que opera de forma completamente abierta o completamente cerrada, cuando circula un corriente en el solenoide se genera un campo magnético que atrae un embolo móvil, y finalizando el efecto del campo magnético el embolo regresa a su posición por efecto de la gravedad con ayuda de un resorte o presión de fluido a controlar (Carvallo & Vargas, 2003).

Figura 3. Válvulas solenoide

Fuente: (United Technologies, s.f.)

Válvula de expansión termostática

Regulan la inyección de refrigerante liquido en los evaporadores, esta inyección es controlada de acuerdo al recalentamiento del refrigerante (Danfoss, 2010).

Figura 4. Válvula de expansión termostática

Fuente: (Danfoss, s.f.)

<u>Presostatos</u>

Protege al sistema de presiones de descargas excesivas y de presiones de aspiración muy bajas, arrancando y parando el compresor (Danfoss, 2010).

Figura 5. Presostato

Fuentes: (IPR partes y repuestos, 2018)

Termostato

Es un interruptor eléctrico que indica la temperatura del recinto refrigerado, y es controlado por la temperatura de sensor y tubo capilar (Danfoss, 2010).

Figura 6. Termómetro digital

Fuentes: (Danfoss, 2010)

Separador de aceite

Diseñado para separar el aceite lubricante del refrigerante, regresando al cartel del compresor y de esta forma se evita que ingrese a otros componentes del sistema (Imcosamex, 2013).

Figura 7. Separador de aceite

Fuente: (Danfoss, 2010)

<u>Visores de líquido</u>

Es utilizado para visualizar y controlar el estado del refrigerante (Danfoss, 2010).

Figura 8. Visor de líquido

Fuente: (Artiko suministros, s.f.)

2.2.8. Selección de equipos para la construcción de un sistema de enfriamiento.

2.2.8.1. Compresores.

Expofrío (2015) refiere que para la selección de un compresor se necesitan los siguientes datos: Capacidad frigorífica requerida (Kcal/h), temperatura de evaporación (° C) y temperatura de condensación (° C).

2.2.8.2. Selección de evaporadores.

Expofrío (2015) refiere que conociendo la carga térmica debemos de seleccionar el evaporador con la misma carga térmica del compresor, es decir, a la misma temperatura de evaporación y de condensación. Puede ser de hasta un 20% adicional para evitar deshielos continuos.

2.2.8.3. Selección simplificada de la V.E.T.

Expofrío (2015) refiere que la selección de la V.E.T. de modo práctico se selecciona con la misma capacidad del compresor, es decir, a una determinada temperatura de evaporación y de condensación, pero se acostumbra a pedirla en T.R. (tonelada de refrigeración).

2.2.8.4. Componentes secundarios del sistema.

Expofrío (2015) afirma:

Todos los componentes adicionales:

- Válvulas de paso.
- Válvulas de solenoide.
- Separadores de aceite.
- Acumuladores de succión.
- Filtros secadores.
- Visores de líquidos.

Se selecciona a la misma capacidad del compresor, temperatura de evaporación y temperatura de condensación. (pág. 32)

2.3. Definición de términos básicos

Calor: Energía que se traspasa de un sistema a otro o de un cuerpo a otro, una transferencia vinculada al movimiento de moléculas, átomos y otras partículas (Pérez Porto & Gardey, 2012).

Frio: Es la ausencia total o parcial de calor (Pérez Porto & Gardey, 2012).

Temperatura: Es una magnitud física que refleja la cantidad de calor, ya sea de un cuerpo, de un objeto o del ambiente (Pérez Porto & Gardey, 2012).

Aislamiento térmico: Capacidad de los materiales para oponerse al paso de calor por conducción (Guillén Mayorga, 2011).

BTU: Unidad de energía necesaria para elevar un grado Fahrenheit un litro de agua (British Thermal Unit) (Guillén Mayorga, 2011).

Paneles para refrigeración: Estructura prefabricada que contiene un aislante en medio de dos planchas protectoras, utilizados como paredes y techos en una cámara de refrigeración (Guillén Mayorga, 2011).

DT: Diferencia de temperatura (Huertas Samayoa, 2013).

Línea de líquido: Tubo o tubería que transporta el refrigerante líquido desde el condensador o recibidor de un sistema de refrigeración a un dispositivo reductor de presión (Huertas Samayoa, 2013).

Línea de succión: Tubo o tubería la cual transporta el refrigerante en estado de vapor, desde el evaporador a la entrada del compresor (Huertas Samayoa, 2013).

TON o TR: Toneladas de Refrigeración (Huertas Samayoa, 2013).

VTE: Válvula de Expansión Termostática.

CAPÍTULO III: DESARROLLO DEL TRABAJO DE SUFICIENCIA PROFESIONAL

3.1. Modelo de solución propuesto

3.1.1. Cálculo de la carga térmica utilizando el software SR 2015.

Para calcular la carga térmica en el software SR2015, necesitamos lo siguiente datos.

- Las dimensiones de la cámara de refrigeración:
 - Largo exterior= 4.74m
 - Ancho exterior= 2.80m
 - Alto exterior = 2.66m
- <u>Dimensión luz de puerta</u>
 - Ancho luz= 0.90m
 - Alto luz= 2.10m
- <u>Luminarias</u>
 - 2 Luminarias herméticas de 36W LED
 - Tiempo de iluminación: 1 horas
- Cantidad de persona en ingresar en la cámara
 - 2 personas
- Tiempo de permanencia de las personas dentro de la cámara
 - 1 hora
- Tiempo de funcionamiento de la unidad condensadora
 - Se recomienda 20 horas de funcionamiento de la unidad condensadora y 4 horas para realizar mantenimiento dentro de la cámara.

• Potencia total de los motores

Se refiere a equipos o maquinas que ingresa a la cámara, como por ejemplo montacargas

- Considerar 1 hp
- Tiempo de trabajo del motor: 1 horas

• Temperatura ambiente del lugar

- Lima: +32 °C

• Temperatura en el interior de la cámara

- Temperatura interna: +4 °C a 0°C

Se considera +2°C

• Tipo de producto

Carne de res

• Temperatura de entrada del producto en la cámara

- +7°C

Cantidad de producto por día

- Información del cliente:

La cámara almacena 8000Kg. Al día realizan dos movimientos del producto.

Quiere decir que la cantidad de producto por día es **16000Kg** de carne.

• Selección de panel termoaislante

Para el armado de la cámara se selecciona panel aislante de Poliuretano (PUR).

Se requiere la siguiente información.

- Temperatura ambiente (Lima): +32°C
- Temperatura dentro de la cámara: +2°C

Tabla 2 Diferencial de temperatura

Selección de pa	nel frigorífico para cámara media t	emperatura
Temperatura Ambiente	Temperatura ambiente Lima	+ 32°C
Temperatura de cámara	Temperatura dentro de la cámara de refrigeración	+ 2°C
DT	Cáculo de diferencia de Temperatura	+ 30°C

Fuente: Elaboración propia

Tabla 3 Selección de espesor de panel termoaislante

Diferencia Temperatura	Espe	esura de Isolan	niento
(°C)	PUR	EPS	LDR
	Poliuretano	Poliestireno	Lana de Roca
20	50	70	93
25	63	88	116
30	75	105	139
35	88	123	162
40	100	140	185
45	113	158	208
50	125	175	231
55	138	193	254
60	150	210	278
65	163	228	301
80	200	280	370

Fuente: Dánica

Se obtiene un panel poliuretano de espesor 75mm.

Pero si la cámara estuviera con el menor grado de conservación (0°C), la diferencia de temperatura sería +32°C. El espesor de panel estaría en un intervalo de 75mm y 88mm.

Se selecciona panel poliuretano de 80mm de espesor. Ya que este espesor de panel poliuretano se encuentra en el mercado.

Espeso de panel poliuretano: 80mm

<u>Tiempo de proceso</u>
 24 horas

Introducir los datos al software SR 2015.

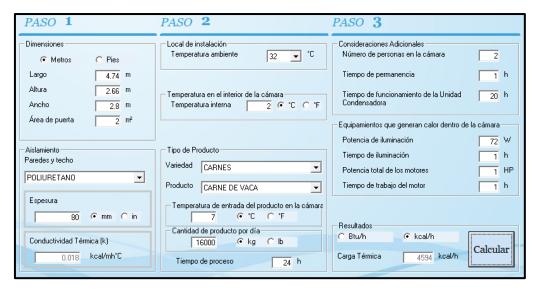


Figura 9. Cálculo de carga térmica

Fuente: Elaboración Propia

El software SR 2015 nos da como carga térmica 4594 Kcal/h.

3.1.2. Selección de equipos.

3.1.2.1. Selección de la unidad condensadora.

Se necesita los siguientes datos para seleccionar la unidad condensadora.

- a) Carga térmica: 4594 Kcal/h
- b) Temperatura de evaporación:

El diferencial de temperatura que utiliza los fabricantes para conseguir la temperatura de evaporación es DT=+6°C.

- T. de evaporación = T. del interior de la cámara DT
- T. de evaporación = +2 °C (+6 °C)
- T. de evaporación = -4 °C
- c) Temperatura de ambiente: +32°C
- d) Refrigerante: Para este proyecto se utilizará refrigerante ecológico R-507

La unidad condensadora se seleccionará en la marca Danfoss.

Figura 10. Marca Danfoss

Fuente: (Danfoss, 2005)

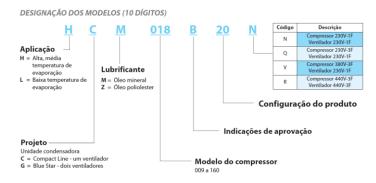


Figura 11. Designación de modelos

Fuente: (Danfoss, 2005)

Para seleccionar la unidad condensadora, la tabla a utilizar tiene que indicar el refrigerante R-507.

Tabla 4 Selección de unidad condensadora, refrigerante R-507

CZ/HG	Z/HGZ Rodulos TE +10°C +5°C 0°C 5°C 10°C 15°C 20°C 35°C 30°C																		
Modelos	TA	+10 C.R.	P.C.	+51	C P.C.	C.R.	107		P.C.	-10 C.R.	C P.C.		C P.C.	-20'	C P.C.	-25 C.R.	C P.C.	-30 C.R.	°C
HCZ 018	32 35 38 43	4321 4024 3726	2,2 2,3 2,3	3753 3492 3230 2790	2,0 2,1 2,1 2,2	3194 2968 2742 2373	1,8 1,9 1,9	2657 2464 2271 1969	1,7 1,7 1,7	2153 1991 1828 1584	1,5 1,5 1,5	1695 1558 1421 1228	1,4 1,4 1,4 1,40	1291 1174 1058 906	1,2 1,2 1,2 1,20	1035 915 796 664	1,0 1,1 1,1 1,10	731 620 510 401	0,0
HCZ 022	32 35 38	5702 5308 4914	2,9 3,0 3,0	5026 4675 4325	2,7 2,8 2,8	4361 4054 3746	2,4 2,5 2,5	3714 3449 3184	2,2 2,2 2,2	3095 2869 2643	1,9 2,0 2,0	2513 2322 2131	17 17 17	1978 1817 1656	1,5 1,5 1,4	1497 1360 1223	1,2 1,2 1,2	1079 958 838	0,
HCZ 028	43 32 35 38	7479 7010 6542	3,2 3,7 3,8 3,9	3703 6521 6107 5692	3,4 3,5 3,5	3216 5599 5237 4874	3,1 3,2 3,2	4722 4410 4098	2,3 2,8 2,9 2,9	3904 3638 3371	2 2/5 2/6 2/6	1828 3157 2930 2704	1,70 2,2 2,3 2,3	1408 2490 2295 2101	1,40 2,0 2,0 2,0	1020 1909 1739 1569	1,10 1,7 1,7 1,7	1418 1264 1109	1,
HCZ 032	32 35 38	8926 8427 7927	4,0 4,1 4,2	7686 7242 6798	3,7 3,8 3,9	4256 6520 6130 5741	3,3 3,4 3,5 3,6	3582 5440 5102 4764	3,0 3,1 3,2 3,2	2946 4457 4165 3874	2,6 2,8 2,9 2,9	3582 3330 3079	2,30 2,5 2,6 2,6	2819 2600 2380	2,00 2,2 2,3 2,3	1336 2171 1975 1779	1,60 1,9 2,0 2,0	911 1635 1453 1271	1,
HCZ 036	32 35 38 43	7039 9557 9012 8468	4,4 4,9 5,0	8340 7852 7363 6496	4,1 4,3 4,4 4,5	5101 7166 6734 6302 5564	3,7 3,9 4,0 4,1	4231 6050 5673 5295 4675	3,3 3,5 3,6 3,7 3.8	3436 5011 4684 4356 3840	3,2 3,3 3,3 3,3	2721 4063 3778 3494 3068	2,60 2,8 2,9 2,9 2,90	2088 3216 2967 2719 2366	2,30 2,5 2,5 2,5 2,50	1537 2479 2257 2035 1739	2,00 2,1 2,1 2,1 2,1 2,10	1064 1854 1649 1443 1187	1,1
HCZ 040	32 35 38 43	11587 10920 10254	5,2 5,4 5,5	10011 9430 8849	4,7 4,8 4,9 5,0	8513 8013 7514	4,2 4,4 4,5 4,6	7110 6686 6262	4,0 4,1 4,1	5817 5460 5103 4547	3,6 3,7 3,7	4647 4349 4050	3,2 3,3 3,3	3610 3358 3106	2,50 2,8 2,9 2,9 2,90	2711 2494 2276	2,4 2,5 2,5	1952 1757 1561	1,2 2, 2, 2,
HCZ 044	32 35 38	9089 11833 11264 10695	5,7 6,2 6,3 6,5	7856 10474 9942 9411	5,2 5,6 5,7 5,8	9090 8591 8093	4,7 5,0 5,2 5,3	7709 7236 6762	4,3 4,5 4,5 4,5	6345 5895 5445	3,8 4,0 4,0 3,9	3597 5041 4636 4231	3,30 3,4 3,5 3,5	2743 3842 3549 3256	3,0 3,1 3,2	1983 2956 2688 2421	2,50 2,7 2,8 2,9	1318 2211 1957 1702	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
HCZ 050	32 35 38 43	13964 13127 12289	6,6 6,8 6,9	8201 12163 11416 10669 9372	6,0 6,2 6,3 6,4	7074 10427 9768 9109 7999	5,3 5,6 5,7 5,8	5934 8782 8206 7630 6690	5,0 5,1 5,1 5,2	4803 7254 6753 6251 5463	4,122 4,5 4,5 4,6	3757 5865 5428 4991 4332	3,63 4,0 4,0 4,0 4,00	2921 4632 4247 3862 3308	3,25 3,5 3,5 3,5 3,5	2118 3564 3218 2872 2390	2,78 3,1 3,1 3,1 3,00	2666 2343 2019 1606	2, 2, 2, 2,
HCZ 056	32 35 38 43	15474 14538 13603	5,0 5,5 6,0	13667 12840 12013 10553	5,0 5,4 5,8 5,9	11879 11165 10451 9177	5,0 5,2 5,5 5,5	10129 9521 8913 7815	4,6 4,9 5,2 5,3	8449 7939 7429 6492	4,2 4,4 4,6 4,727	6878 6395 5912 5131	4,0 4,0 4,0 4,0	5252 4798 4345 3722	3,5 3,5 3,5 3,5	4057 3652 3248 2717	3,0 3,0 3,0 2,94	3034 2663 2291 1828	2, 2, 2, 2,
HCZ 064	32 35 38 43	18031 17008 15986 14156	8,3 8,5 8,7 8,9	15727 14814 13900 12317	7,6 7,8 7,9 8.1	13517 12710 11902 10544	6,9 7,0 7,1 7,3	11430 10721 10011 8856	6,3 6,4 6,4	9488 8867 8247 7771	5,6 5,7 5,7 5,8	7714 7170 6625 5803	5,0 5,1 5,1 5,1	6125 5642 5159 4463	4,4 4,4 4,40	4732 4294 3856 3258	3,8 3,8 3,8 3,70	3539 3130 2720 2191	3 3 3
HGZ 072	32 35 38 43	19401 18284 17167 15148	9,6 9,8 9,9	16094 15004 15004 13250	8,7 8,9 9,0 9,3	14669 13791 12913 11403	7,9 8,0 8,2	12457 11688 10919 9631	7,1 7,2 7,3 7,4	10390 9720 9049 7957	6,4 6,5 6,5 6,54	8494 7908 7322 6397	5,7 5,7 5,8 5,80	6789 6272 5755 4967	5,0 5,1 5,1 5,13	5289 4824 4358 3674	4,5 4,5 4,5 4,6	4047 3619 3191 2599	. m m m
HGZ 080	32 35 38 43	21564 20320 19076 16826	11,2 11,4 11,6 12,0	18965 17857 16749	10,2 10,4 10,5 10,8	16441 15464 14487 12808	9,2 9,4 9,5 9,7	14029 13174 12320 10991	8,3 8,4 8,5 8,6	11764 11019 10274 9068	7,4 7,5 7,6 7,6	9675 9026 8376 7360	6,6 6,7 6,7 6,70	7788 7216 6644 5785	5,8 5,9 5,9	6121 5574 5027 4180	5,1 5,1 5,1 5,1	4610 4023 3435 2603	4 4
HGZ 100	32 35 38 43	24826 23301 21776	10,9 11,2 11,5	21700 20340 18981	10,6 10,9 11,1	18658 17460 16262 14217	9,7 9,9 10,1 10,4	15747 14702 13656 11932	8,9 9,1 9,2 9,4	13016 12108 11199 9759	8,1 8,2 8,3 8,4	10505 9715 8924 7728	7,3 7,4 7,4 7,40	8252 7556 6860 5863	6,5 6,5 6,5 6,5	6282 5688 5093 4357	5,7 5,7 5,7 5,60	4684 4206 3729 3082	4444
HGZ 125	32 35 38 43	33810 31905 29999 26600	14,1 14,7 15,2 16,2	29419 27709 26000 23068	13,2 13,6 14,0 14,8	25226 23701 22176 19666	12,2 12,5 12,8 13,4	21273 19917 18561 16423	11,2 11,4 11,5 11,9	17599 16392 15184 13367	10,1 10,2 10,3 10,5	14242 13158 12074 10524	9,0 9,0 9,0 9,0	11229 10242 9255 7917	7,9 7,8 7,7 7,60	8584 7664 6744 5563	6,7 6,6 6,4 6,30	6317 5432 4548 3474	5 5 4
HGZ 144	32 35 38 43	36577 34495 32413	17,4 17,8 18,2	32029 30161 28293 24929	15,9 16,2 16,5 17,1	27640 25984 24328 21456	14,5 14,8 15,0 15,5	23475 22023 20571 18146	13,2 13,4 13,6 13,9	19598 18333 17069 15041	12,0 12,2 12,3 12,5	16061 14962 13862 12174	10,8 10,9 11,0 11,20	12906 11943 10980 9573	9,7 9,8 9,8 9,90	10159 9298 8437 7251	8,6 8,7 8,7 8,70	7830 7034 6238 5211	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
HGZ 160	32 35 38 43	40141 37757 35372	19,7 20,2 20,7	35289 33169 31049 27313	18,1 18,5 18,9 19,6	30588 28724 26860 23657	16,6 16,9 17,2	26104 24481 22859 20141	15,1 15,4 15,6 16.0	21898 20495 19091 16808	13,7 13,9 14,0 143	18028 16815 15602 13698	12,3 12,4 12,5 12,70	14542 13484 12427 10829	10,9 11,0 11,1	11472 10532 9592 8239	9,6 9,7 9,7 9,60	8839 7975 7111 5933	8 8 8 8

Fuente: (Danfoss, 2005)

Identificando la carga térmica y el modelo de la unidad condensadora.

Modelos	TE	+10	°C	+5°	C	0°C	2	-5°	c	
Modelos	TA	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	
	32	4321	2,2	3753	2,0	3194	1,8	2057	1,7	
HCZ 018	35	4024	2,3	3492	2,1	2968	1,9	2464	1,7	
HCZ 010	38	3726	2,3	3230	2,1	2742	1,9	2271	1,7	
	43			2790	2,2	2373	1,9	1969	1,7	
	32	5702	2,9	5026	2,7	4361	2,4	3714	2,2	
HCZ 022	35	5308	3,0	4675	2,8	4054	2,5	3449	2,2	
HCZ 022	38	4914	3,0	4325	2,8	3746	2,5	3184	2,2	
	43	4196	3,2	3703	2,9	3216	2,6	2737	2,3	
	32	7479	3,7	6521	3,4	5599	3,1	4722	2,8	
HCZ 028	35	7010	3,8	6107	3,5	5237	3,2	4410	2,9	
HCZ 020	38	6542	3,9	5692	3,5	4874	3,2	4098	2,9	
	43			4962	3,7	4256	3,3	3582	3,0	
	32	8926	4,0	7686	3,7	6520	3,4	5440	3,1	
HCZ 032	35	8427	4,1	7242	3,8	6130	3,5	5102	3,2	
HCZ 032	38	7927	4,2	6798	3,9	5741	3,6	4764	3,2	
	43	7039	4,4	6040	4,1	5101	3,7	4231	3,3	

Figura 12. Selección de unidad condensadora

Fuente: Elaboración propia

A temperatura de evaporación -5 °C y temperatura de ambiente +32 °C, se busca en la tabla carga térmica en Kcal/h igual o mayor a la carga obtenida con el software SR 2015.

La carga térmica obtenida en la tabla es **4722 Kcal/h** a Temperatura de evaporación -5°C, y el modelo de la unidad condensadora en la marca Danfoss es **HCZ 028.**

3.1.2.2. Selección del evaporador.

Se necesita los siguientes datos para seleccionar un evaporador.

- a) Carga térmica de la unidad condensadora: 4722 Kcal/h
- b) Temperatura de evaporación: El diferencial de temperatura que utiliza los fabricantes para conseguir la temperatura de evaporación es DT=+6°C.
- T. de evaporación = T. del interior de la cámara DT
- T. de evaporación = +2 °C (+6 °C)
- T. de evaporación = -4 °C

El evaporador se va seleccionar en la marca BOHN

Tabla 5 Selección de evaporador

	CARRA	CAPACIDAD			CAPACIDAD Ventilador								Dimen	siones			0	Conexiones (Pulgadas)				
Modelo			Ventilador				Motor		Largo Ancho Alto			lito	Cone	Embarque								
Modelo	BTUH 10°F DT	Keal/hr 5.5°C DT	CFM	m3/ min	No.	Dia. pulg	115/1/60 FLA	230/1/60 FLA	cm	pulg	cm	pulg	cm	pulg	Líquido	Succión	Drenaje	Ubs.	kg.			
ADT040	4000	1008	730	1240	1	12	0.55	0.28	74.93	29.50	37.80	14.88	37.95	14.94	1/2 DE	5/8 DI	5/8 MPT	23	13			
ADT052	5200	1310	700	1189	1	12	0.55	0.28	74.93	29.5	37.80	14.88	37.95	14.94	1/2 DE	5/8 DI	5/8 MPT	31	15			
ADT065	6500	1637	650	1104	1	12	0.55	0.28	74.93	29.5	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	34	16			
ADT070	7000	1763	1460	2481	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	45	21			
ADT090	9000	2267	1400	2379	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	48	22			
ADT104	10400	2620	1400	2379	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	49	23			
ADT120	12000	3023	1300	2209	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	51	24			
ADT130	13000	3275	1300	2209	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	53	25			
ADT140	14000	3526	2100	3568	3	12	1.65	0.84	156.21	61.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	63	29			
ADT156	15600	3929	2100	3568	3	12	1.65	0.84	156.21	61.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	67	31			
ADT180	18000	4534	1950	3313	3	12	1.65	0.84	156.21	61.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	69	32			
ADT208	20800	5239	2800	4758	4	12	2.20	1.12	196.85	77.50	37.80	14.88	37.95	14.94	1/2 DE	1 1/8 DI	5/8 MPT	82	38			
ADT260	26000	6549	3250	5522	5	12	2.75	1.40	237.49	93.50	37.80	14.88	37.95	14.94	1/2 DE	1 1/8 DI	5/8 MPT	103	47			
ADT312	31200	7859	3900	6627	6	12	3.30	1.68	278.13	109.50	37.80	14.88	37.95	14.94	1/2 DE	1 1/8 DI	5/8 MPT	124	57			
ADT370	37000	9320	3900	6627	6	12	3.30	1.68	278.13	109.50	37.80	14.88	37.95	14.94	1/2 DE	1 3/8 DI	5/8 MPT	127	58			

Fuente: (BOHN, 2019)

Identificando la carga térmica y modelo del evaporador. (Catálogo indica temperatura de evaporación -3.9°C)

		CAPAC	IDAD
	Modelo	BTUH 10°F DT	Kcal/hr 5.5°C DT
	ADT040	4000	1008
	ADT052	5200	1310
	ADT065	6500	1637
	ADT070	7000	1763
	ADT090	9000	2267
	ADT104	10400	2620
	ADT120	12000	3023
	ADT130	13000	3275
	ADT140	14000	3526
	ADT156	15600	3929
	ADT180	18000	4534
(ADT208	20800	5239
	ADT260	26000	6549
	ADT312	31200	7859
	ADT370	37000	9320

Figura 13. Selección de evaporador

Fuente: Elaboración Propia

A temperatura de evaporación -3.9 °C, se busca en la tabla carga térmica en Kcal/h igual o mayor a 4722 Kcal/h.

La carga térmica obtenida en la tabla es **5239 Kcal/h**, y el modelo del evaporador en la marca BOHN es **ADT 208.**

3.1.2.3. Selección de válvula de expansión termostática.

Para seleccionar la válvula de expansión termostática se utilizará el software COOLSELECTOR2, programa de la marca Danfoss.

Se necesita los siguientes datos para seleccionar la válvula de expansión termostática:

a) Carga térmica:

La capacidad de la unidad condensadora modelo HCZ028 es 4722 Kcal/h a temperatura de evaporación -5°C.

Nuestra temperatura de evaporación es -4°C. Tabulando en la tabla 3, se obtiene que la unidad condensadora modelo HCZ028 a temperatura de evaporación -4°C su capacidad es de **4897.4 Kcal/h**. 4897.4 Kcal/h = 5.6957 KW

b) Temperatura de evaporación:

La diferencia de temperatura que utiliza los fabricantes para conseguir la temperatura de evaporación es DT=+6°C.

T. de evaporación = T. del interior de la cámara – DT

T. de evaporación = +2 °C – (+6 °C)

T. de evaporación = -4 °C

c) Temperatura de condensación:

La diferencia de temperatura que utiliza los fabricantes para conseguir la temperatura de evaporación es DT=+12°C.

- T. de condensación = T. del ambiente + DT
- T. de condensación = +32 °C + (+12 °C)
- T. de condensación = +44 °C
- d) Refrigerante: Para este proyecto se utilizará refrigerante ecológico R-507

Ingresando los datos al software COOLSELECTOR2, se obtiene los siguientes resultados.

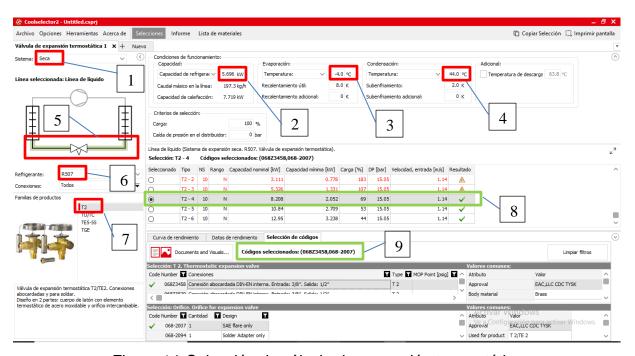


Figura 14. Selección de válvula de expansión termostática

Fuente: Elaboración propia

Datos a ingresar

1. Sistema: Seco

2. Capacidad de refrigeración: 5.6957 KW

- 3. Temperatura de evaporación: -4 °C
- 4. Temperatura de condensación: +44 °C
- 5. Seleccionar ubicación de la válvula de expansión termostática.
- 6. Refrigerante: R-507
- Familia del producto: T2 (Válvula de expansión termostática T2/TE2. Conexiones abocardadas y para soldar. Diseño en 2 partes: cuerpo de latón con elemento termostático de acero inoxidable y orificio intercambiable.)

Resultado del software

- 8. Selección: T2-4
- 9. Códigos seleccionados: (068Z3458, 068-2007)
 - T2 (068Z3458) cuerpo de latón con elemento termostático de acero inoxidable.
 - N° 4 (068-2007) orificio intercambiable.

3.1.2.4. Selección de la válvula solenoide.

Para seleccionar la válvula solenoide se utilizará el software COOLSELECTOR2, programa de la marca Danfoss.

Se necesita los siguientes datos para seleccionar la válvula de expansión termostática:

a) Carga térmica:

La capacidad de la unidad condensadora modelo HCZ028 es 4722 Kcal/h a temperatura de evaporación -5°C.

Nuestra temperatura de evaporación es -4°C. Tabulando en la tabla 3, se obtiene que la unidad condensadora modelo HCZ028 a temperatura de evaporación -4°C su capacidad es de **4897.4 Kcal/h**.

4897.4 Kcal/h = 5.6957 KW

b) Temperatura de evaporación:

La diferencia de temperatura que utiliza los fabricantes para conseguir la temperatura de evaporación es DT=+6°C.

- T. de evaporación = T. del interior de la cámara DT
- T. de evaporación = +2 °C (+6 °C)
- T. de evaporación = -4 °C

c) Temperatura de condensación:

La diferencia de temperatura que utiliza los fabricantes para conseguir la temperatura de evaporación es DT=+12°C.

- T. de condensación = T. del ambiente + DT
- T. de condensación = +32 °C + (+12 °C)
- T. de condensación = +44 °C

 d) Refrigerante: Para este proyecto se utilizará refrigerante ecológico R-507.

Ingresando los datos al software COOLSELECTOR2, se obtiene los siguientes resultados.

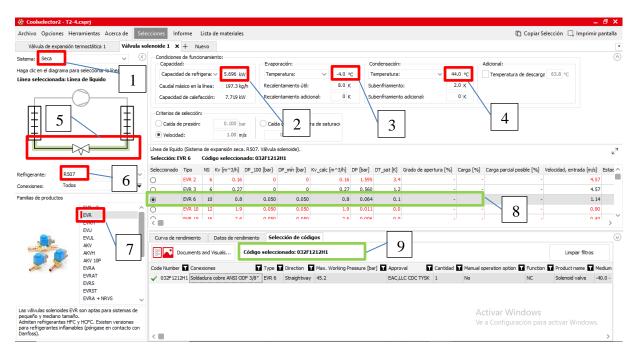


Figura 15. Selección de válvula solenoide

Fuente: Elaboración propia

Datos a ingresar

1. Sistema: Seco

2. Capacidad de refrigeración: 5.6957 KW

3. Temperatura de evaporación: -4 °C

4. Temperatura de condensación: +44 °C

5. Seleccionar ubicación de la válvula solenoide.

6. Refrigerante: R-507.

 Familia del producto: EVR (Las válvulas solenoides EVR son aptas para sistemas de pequeño y mediano tamaño. Admiten refrigerantes HFC y HCFC. Existen versiones para refrigerantes inflamables.)

Resultado del software

Selección: EVR 6

9. Códigos seleccionados: (032F1212H1)

La bobina para la válvula solenoide debe ser de 10W/220V / 60Hz.

3.1.2.5. Selección del diámetro de la tubería de cobre.

Para dimensionar la tubería de cobre se utilizará tablas del "Instructivo para la instalación de compresores Maneurop" de la marca Danfoss.

La tabla a utilizar debe indicar que es para refrigerante R-507.

Tabla 6
Dimensiones de tuberías - línea de succión

						Dián	netro d	le la lín	ea de s	ucción	- R404	A e R-	507								
				Temp	eratura	a de su	cción			Tem	peratur	a de su	ıcción	Temperatura de succión							
					-7							2°C		-23°C							
Capacio	dade Frig	orifica		Longi	tud Equ	uivalent	te (m)			Long	itud Eq	uivalen	te (m)		Longitud Equivalente (m)						
Btu/h	Kcal/h	W	8 m	15 m	23 m	30 m	45 m	61 m	8 m	15 m	23 m	30 m	45 m	61 m	8 m	15 m	23 m	30 m	45 m	61 m	
1000	252	293	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	1/2	3/8	3/8	3/8	1/2	1/2	1/2	
3000	756	879	3/8	3/8	1/2	1/2	1/2	5/8	3/8	1/2	1/2	1/2	5/8	5/8	1/2	1/2	5/8	5/8	5/8	5/8	
4000	1008	1172	3/8	1/2	1/2	1/2	5/8	5/8	1/2	1/2	1/2	5/8	5/8	7/8	1/2	5/8	5/8	5/8	7/8	7/8	
6000	1512	1758	1/2	1/2	5/8	5/8	7/8	7/8	1/2	1/2	5/8	5/8	5/8	5/8	1/2	5/8	5/8	7/8	7/8	7/8	
9000	2268	2637	5/8	5/8	7/8	7/8	7/8	7/8	5/8	5/8	7/8	7/8	7/8	7/8	5/8	7/8	7/8	7/8	7/8	1 1/8	
12000	3024	3516	5/8	7/8	7/8	7/8	7/8	7/8	5/8	7/8	7/8	7/8	7/8	1 1/8	7/8	7/8	7/8	7/8	1 1/8	1 1/8	
15000	3780	4395	5/8	7/8	7/8	7/8	7/8	1 1/8	7/8	7/8	7/8	7/8	1 1/8	1 1/8	7/8	7/8	7/8	1 1/8	1 1/8	1 1/8	
18000	4536	5274	7/8	7/8	7/8	7/8	1 1/8	1 1/8	7/8	7/8	7/8	1 1/8	1 1/8	1 1/8	7/8	7/8	1 1/8	1 1/8	1 1/8		
24000	6048	7032	7/8	7/8	7/8	1 1/8	1 1/8	1 1/8	7/8	1 1/8	1 1/8	1 1/8	1 1/8	1 3/8	7/8	1 1/8	1 1/8	1 1/8	1 3/8	1 3/8	
30000	7560	8790	7/8	7/8	1 1/8	1 1/8	1 1/8	1 3/8	7/8	1 1/8	1 1/8	1 1/8	1 3/8	1 3/8	1 1/8	1 1/8	1 1/8	1 3/8	1 3/8		
36000	9072	10548	7/8	1 1/8	1 1/8	1 1/8	1 3/8	1 3/8	1 1/8	1 1/8	1 1/8	1 3/8	1 3/8	1 3/8	1 1/8	1 1/8	1 3/8	1 3/8	1 3/8		
42000	10584	12306	1 1/8	1 1/8	1 1/8	1 3/8	1 3/8	1 5/8	1 1/8	1 1/8	1 3/8	1 3/8	1 3/8	1 5/8	1 1/8	1 3/8	1 3/8	1 3/8	1 5/8		
48000	12096	14064	1 1/8	1 1/8	1 3/8	1 3/8	1 3/8	1 3/8	1 1/8	1 1/8	1 3/8	1 3/8	1 5/8	1 5/8	1 1/8	1 3/8	1 3/8	1 3/8	1 5/8	1 5/8	
54000	13608	15822	1 1/8	1 1/8	1 3/8	1 3/8	1 3/8	1 5/8	1 1/8	1 3/8	1 3/8	1 3/8	1 5/8	1 5/8	1 3/8	1 3/8	1 3/8	1 5/8	1 5/8	1 5/8	
60000	15120	17580	1 1/8	1 1/8	1 1/8	1 3/8	1 5/8	1 5/8	1 1/8	1 3/8	T 3/8	1 5/8	1 5/8	1 5/8	1 3/8	1 3/8	1 5/8	15/8	1 5/8	1 5/8	
66000	16632	19338	1 1/8	1 3/8	1 3/8	1 3/8	1 5/8	1 5/8	1 1/8	1 3/8	1 3/8	1 5/8	1 5/8	1 5/8	1 3/8	1 5/8	1 5/8	1 5/8	1 5/8	1 5/8	
72000	18144	21096	1 1/8	1 3/8	1 3/8	1 5/8	1 5/8	1 3/8	1 1/8	1 3/8	1 5/8	1 5/8	1 5/8	1 5/8	1 3/8	1 5/8	1 5/8	1 5/8	1 5/8	1 5/8	
78000	19656	22854	1 1/8	1 1/8	1 3/8	1 5/8	1 5/8	2 1/8	1 3/8	1 3/8	1 5/8	1 5/8	1 5/8	2 1/8	1 3/8	1 5/8	1 5/8	1 5/8	1 5/8	2 1/8	
84000	21168	24612	1 1/8	1 3/8	1 3/8	1 5/8	1 5/8	2 1/8	1 3/8	1 3/8	1 5/8		2 1/8	2 1/8	1 3/8	1 5/8	1 5/8	1 5/8	2 1/8		
90000	22680	26370	1 3/8	1 3/8	1 5/8	1 5/8	2 1/8	2 1/8	1 3/8	1 5/8	1 5/8	1 5/8	2 1/8	2 1/8	1 5/8	1 5/8	1 5/8	2 1/8	2 1/8	2 5/8	
120000	30240	35160	1 3/8	1 5/8	1 5/8	2 1/8	2 1/8	2 1/8	1 3/8	1 5/8			2 1/8	2 1/8	1 5/8	1 5/8		2 1/8	2 5/8		
150000	37800	439500	1 5/8	1 5/8	2 1/8	2 1/8	2 1/8	2 1/8	1 5/8	2 1/8			2 1/8	2 5/8	2 1/8	2 1/8			2 5/8		
180000	45360	52740	1 5/8	2 1/8	2 1/8	2 1/8	_	2 5/8	1 5/8	2 1/8		2 1/8	2 5/8	2 5/8	2 1/8	2 1/8	2 5/8	2 5/8	2 5/8	3 1/8	
210000	52920	61530		2 1/8	2 1/8	2 1/8		2 5/8	2 1/8			2 5/8		2 5/8	2 1/8		2 5/8		2 5/8		
240000	60480	70320		2 1/8	2 1/8	2 1/8		2 5/8	2 1/8			2 5/8		2 5/8	2 1/8			2 5/8			
300000	75600	87900	2 1/8	2 1/8	2 5/8	2 5/8	2 5/8	3 1/8	2 1/8	2 5/8	2 5/8	2 5/8	3 1/8	3 1/8	2 5/8		2 5/8	3 1/8	3 1/8	3 5/8	
360000	90720	105480	2 1/8	2 1/8	2 5/8	2 5/8	3 1/8	3 1/8	2 1/8	2 5/8	2 5/8	2 5/8	3 1/8	3 1/8	2 5/8	2 5/8	3 1/8	3 1/8	3 5/8	3^5//8	
480000	120960	140640	2 1/8		3 1/8	3 1/8	3 5/8	3 5/8	2 5/8		3 1/8	3 1/8		3 5/8	3 1/8	3 1/8		3 5/8	4 1/8	4/1/8	
600000	151200	175800	2 5/8	2 5/8	3 1/8	3 1/8	3 5/8	3 5/8	2 5/8	2 5/8	3 1/8	3 1/8	3 5/8	3 5/8	3 1/8	3 1/8	3 1/8	3 5/8	4 1/8	4 1/8	

Fuente: (Danfoss Industrias Ltda., 2003)

La interconexión del evaporador y unidad condensadora tiene una longitud de 22.5 metros aproximadamente.

La capacidad de la unidad condensadora modelo HCZ028 es 4722 Kcal/h a temperatura de evaporación -5°C.

Tabulando, a -7°C de temperatura de evaporación la capacidad de refrigeración es 4371.2 Kcal/h.

	Diámetro de la línea de succión - R404A e R-507												
	Temperatura de succión								Temperatura de succión				
					-7	°C			-12°C				
Capacio	dade Frig	orífica		Longi	tud Eqı	uivalen	te (m)		Longitud Equivalente (m				
Btu/h	Kcal/h	W	8 m	15 m	23 m	30 m	45 m	6l m	8 m	15 m	23 m	30 m	45 m
1000	252	293	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
3000	756	879	3/8	3/8	1/2	1/2	1/2	5/8	3/8	1/2	1/2	1/2	5/8
4000	1008	1172	3/8	1/2	1/2	1/2	5/8	5/8	1/2	1/2	1/2	5/8	5/8
6000	1512	1758	1/2	1/2	5/8	5/8	7/8	7/8	1/2	1/2	5/8	5/8	5/8
9000	2268	2637	5/8	5/8	7/8	7/8	7/8	7/8	5/8	5/8	7/8	7/8	7/8
12000	3024	3516	5/8	7/8	7/8	7/8	7/8	7/8	5/8	7/8	7/8	7/8	7/8
15000	3780	4395	5/8	7/8	7/8	7/8	7/8	1 1/8	7/8	7/8	7/8	7/8	1 1/8
18000	4536	5274	7/8	7/8	7/8	7/8	1 1/8	1 1/8	7/8	7/8	7/8	1 1/8	1 1/8
24000	6048	7032	7/8	7/8	7/8	1 1/8	1 1/8	1 1/8	7/8	1 1/8	1 1/8	1 1/8	1 1/8

Figura 16. Selección de diámetro de tubería de succión

Fuente: Elaboración propia

Buscando en la tabla la capacidad de refrigeración 4371.2Kcal/h, temperatura de evaporación -7°C y longitud 22.5 metros, se obtiene que el diámetro de la línea de succión es 7/8".

Para seleccionar el diámetro de tubería de la línea de líquido utilizaremos la siguiente tabla del "Instructivo para la instalación de compresores Maneurop" de la marca Danfoss.

La tabla a utilizar debe indicar que es para refrigerante R-507.

Tabla 7 Dimensiones de tuberías - línea de líquido

		Dia	ámetro de la líne	a de líquido - R	404A e R-507	-	1	1
			Tanque de líquid	o para válvula de	e expansión			
C	apacidad Frigorifi	ca			Longit	ud Equivalente ((m)	
Btu/h	Kcal/h	W	8 m	15 m	23 m	30 m	45 m	6l m
1000	252	293	3/8	3/8	3/8	3/8	3/8	3/8
3000	756	879	3/8	3/8	3/8	3/8	3/8	3/8
4000	1008	1172	3/8	3/8	3/8	3/8	3/8	3/8
6000	1512	1758	3/8	3/8	3/8	3/8	3/8	3/8
9000	2268	2637	3/8	3/8	3/8	3/8	3/8	3/8
12000	3024	3516	3/8	3/8	3/8	3/8	3/8	1/2
15000	3780	4395	3/8	3/8	3/8	3/8	1/2	1/2
18000	4536	5274	3/8	3/8	3/8	1/2	1/2	1/2
24000	6048	7032	3/8	3/8	1/2	1/2	1/2	1/2
30000	7560	8790	3/8	1/2	1/2	1/2	1/2	1/2
36000	9072	10548	1/2	1/2	1/2	1/2	1/2	5/8
42000	10584	12306	1/2	1/2	1/2	1/2	5/8	5/8
48000	12096	14064	1/2	1/2	1/2	5/8	5/8	5/8
54000	13608	15822	1/2	1/2	1/2	5/8	5/8	5/8
60000	15120	17580	1/2	1/2	5/8	5/8	5/8	5/8
66000	16632	19338	1/2	1/2	5/8	5/8	5/8	5/8
72000	18144	21096	1/2	5/8	5/8	5/8	5/8	5/8
78000	19656	22854	5/8	5/8	5/8	5/8	5/8	7/8
84000	21168	24612	5/8	5/8	5/8	5/8	7/8	7/8
90000	22680	26370	5/8	5/8	5/8	7/8	7/8	7/8
120000	30240	35160	5/8	5/8	7/8	7/8	7/8	7/8
150000	37800	439500	5/8	7/8	7/8	7/8	7/8	1 1/8
180000	45360	52740	7/8	7/8	7/8	7/8	1 1/8	1 1/8
210000	52920	61530	7/8	7/8	7/8	1 1/8	1 1/8	I I/8
240000	60480	70320	7/8	7/8	I I/8	1 1/8	1 1/8	I 3/8
300000	75600	87900	7/8	1 1/8	I I/8	1 1/8	I 3/8	I 3/8
360000	90720	105480	1 1/8	1 1/8	I I/8	I 3/8	I 3/8	I 5/8
480000	120960	140640	I I/8	1 1/8	I 3/8	I 3/8	I 5/8	I 5378
600000	151200	175800	1 1/8	I 3/8	1 3./8	1 5/8	1 5/8	1 5/8

Fuente: (Danfoss Industrias Ltda., 2003)

La interconexión del evaporador y unidad condensadora tiene una longitud de 22.5 metros aproximadamente.

Teniendo la capacidad de refrigeración 4371.2 Kcal/h a temperatura de evaporación -7°C, buscamos en la tabla el diámetro de la línea de líquido.

	-	Dia	ámetro de la líne	ea de líquido - R	404A e R-507	
			Tanque de líquid	lo para válvula d	e expansión	
(Capacidad Frigorífi	ca			Longit	ud Equivalente
Btu/h	Kcal/h	W	8 m	15 m	23 m	30 m
1000	252	293	3/8	3/8	3/8	3/8
3000	756	879	3/8	3/8	3/8	3/8
4000	1008	1172	3/8	3/8	3/8	3/8
6000	1512	1758	3/8	3/8	3/8	3/8
9000	2268	2637	3/8	3/8	3/8	3/8
12000	3024	3516	3/8	3/8	3/8	3/8
15000	3780	4395	3/8	3/8	3/8	3/8
18000	4536	5274	3/8	3/8	3/8	1/2
24000	6048	7032	3/8	3/8	1/2	1/2
30000	7560	8790	3/8	1/2	1/2	1/2
36000	9072	10548	1/2	1/2	1/2	1/2

Figura 17. Selección de diámetro de tubería de líquido

Buscando en la tabla la capacidad de refrigeración 4371.2Kcal/h y longitud 22.5 metros, se obtiene que el diámetro de la línea de líquido es 3/8".

3.1.2.6. Accesorios.

Al pedir una unidad condensadora a la fábrica, la unidad condensadora debe tener los siguientes elementos principales.

- Presostato dual
- Separador de aceite
- Válvula check
- Tanque recibidor de liquido
- Filtro de líquido
- Visor de líquido
- Llave de paso para línea de aceite.

En caso no contenga algunos de estos elementos la unidad condensadora, se deberá comprar.

3.2. Resultados

3.2.1. Resultados obtenidos en cálculos.

De los cálculos anteriores se obtuvo lo siguiente.

a) <u>Unidad condensadora</u>

Marca Danfoss

Modelo HCZ 028

Capacidad de refrigeración: 4897.4 Kcal/h

Temperatura de evaporación: -4 °C

Temperatura de condensación: +44 °C

Refrigerante: R-507

Voltaje: 220V / 3HP / 60Hz

Cantidad: 1 unidad

b) Evaporador

Marca BOHN

Modelo ADT 208

Capacidad de refrigeración: 5239 Kcal/h

Temperatura de evaporación: -4 °C

Temperatura de condensación: +44 °C

Refrigerante: R-507

Voltaje: 220V / 1HP / 60Hz

Cantidad: 1 unidad

c) Válvula de expansión termostática

Marca Danfoss

Modelo T2-4

Códigos seleccionados: (068Z3458, 068-2007)

Refrigerante: R-507

d) Válvula solenoide

Marca Danfoss

Modelo EVR 6

Códigos seleccionados: (032F1212H1)

Refrigerante: R-507

Bobina de válvula solenoide 10W / 220V/ 60Hz

e) Diámetros de tubería de cobre (interconexión)

Línea de succión: Ø7/8" Línea de líquido: Ø3/8"

f) Accesorios

- Presostato dual
- Separador de aceite
- Válvula check
- Tanque recibidor de liquido
- Filtro de líquido
- Visor de líquido
- Llave de paso para línea de aceite.

3.2.2. Esquema técnico de refrigeración.

La interconexión de la unidad condensadora, evaporador, válvulas solenoide y válvula de expansión termostática se muestra en la siguiente imagen.

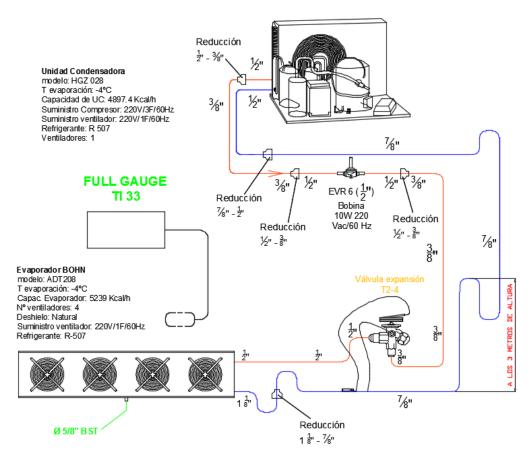


Figura 18. Esquema técnico de refrigeración

3.2.3. Circuito técnico de refrigeración.

Los elementos básicos de debe tener la instalación mecánica en una cámara de refrigeración de media temperatura es como se muestra en la siguiente imagen.

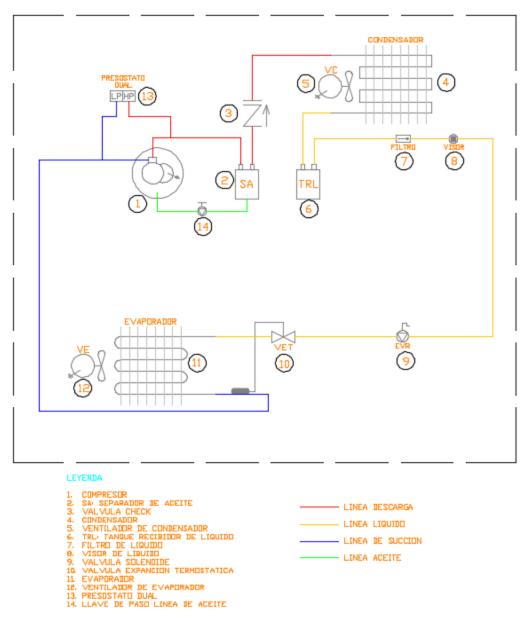


Figura 19. Circuito técnico de refrigeración

3.2.4. Diseño de la cámara de refrigeración.

El diseño de la cámara de refrigeración es como se muestra en las siguientes imágenes.

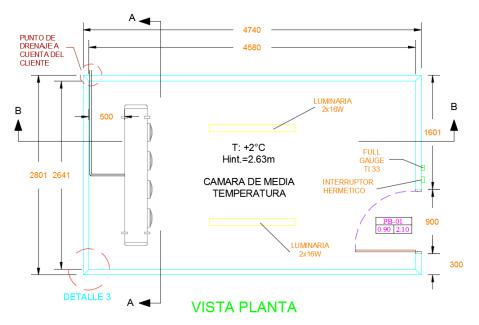


Figura 20. Cámara de refrigeración - Vista de planta

Fuente: Elaboración propia

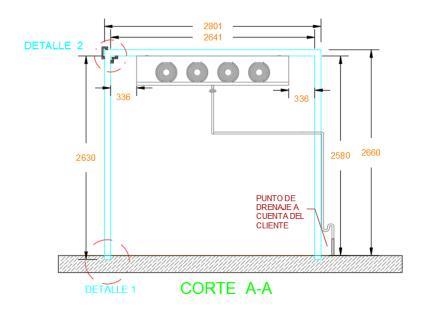


Figura 21. Cámara de refrigeración - Corte A-A (Vista de elevación)

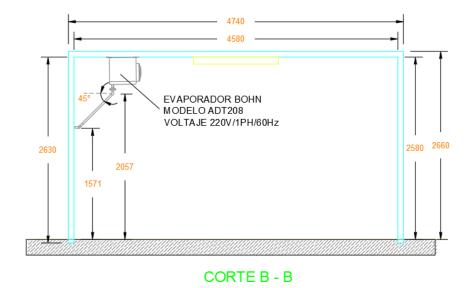


Figura 22. Cámara de refrigeración - Corte B-B (Vista de elevación)

Fuente: Elaboración propia

El panel se empotra en el piso a 50mm y la zanja debe ser de 90mm de ancho para introducir el panel.

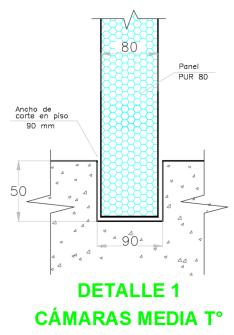


Figura 23. Detalle de empotramiento del panel

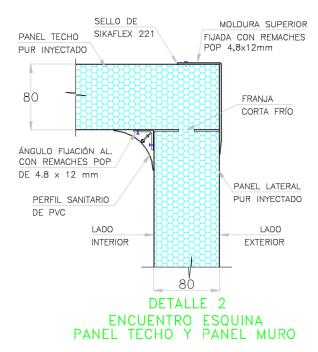


Figura 24. Detalle encuentro de esquina panel techo y panel muro Fuente: Elaboración propia

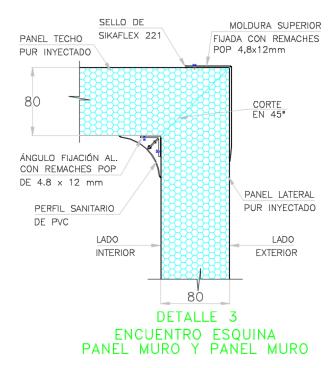


Figura 25. Detalle encuentro de esquina panel muro y panel muro Fuente: Elaboración propia

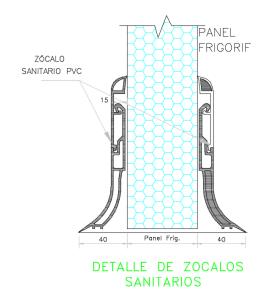


Figura 26. Detalle de zócalos sanitarios

CONCLUSIONES

- Los componentes que muestra la figura 19 son los necesarios para un buen funcionamiento de la cámara de refrigeración.
- La carga térmica obtenida por el software SR2015 se obtuvo de acuerdo a la aplicación y producto a usar.
- El refrigerante utilizado es R507, refrigerante inocuo a la capa de ozono.

RECOMENDACIONES

- Verificar la unidad condensadora tanto en físico como la ficha técnica, asegurando que contenga los accesorios indicados en la ficha técnica.
- Verificar la unión entre paneles y el sellado entre la puerta y su marco, para evitar condensación en espacios abiertos.
- Utilizar la cámara de acuerdo a la aplicación e información entregada al proyectista. Caso contrario, los equipos sufrirán daños y el producto almacenado se descompondría rápidamente ocasionando pérdidas económicas.

BIBLIOGRAFÍA

- Artiko suministros. (s.f.). *Artiko Suministros de refrigeración*. Obtenido de http://artikosuministros.com/producto/visor-liquido-14-flare/
- BOHN. (2019). Catálogo de productos refrigeración comercial e industrial. BOHN, 6.
- Carvallo, J. P., & Vargas, R. (Junio de 2003). *Válvulas solenoide*. Obtenido de https://studylib.es/doc/5988509/v%C3%A1lvulas-de-solenoide
- Catucuago Zurita, N. F., & Tipán Suntaxi, L. (2015). Ingeniero Mecánico. *Diseño y construcción de una cámara frigorífica modular de 9.6 m3 para conservación de vacunas*. Universidad Politécnica Salesiana, Quito, Quito, Ecuador.
- Céspedes Urrutia, R. S. (2012). Ingeniero Mecánico. Sistema de refrigeración con capacidad de bodega para almacenar 300Kg de pescado. Pontificia Universidad Católica del Perú, Lima, Perú.
- Conceptodefinicion. (18 de Julio de 2019). *Conceptodefinicion*. Obtenido de https://conceptodefinicion.de/conservacion-alimentos/
- Cosmos. (s.f.). *Información Técnica y Comercial de la Carne de res*. Obtenido de https://www.cosmos.com.mx/wiki/carne-de-res-4dgz.html
- Danfoss. (2005). Selección y aplicación de unidades condensadora hermetica 60 Hz. Danfoss, 10.
- Danfoss. (2005). Selección y aplicación de unidades condensadora hermetica 60 Hz. 1.
- Danfoss. (2005). Selección y aplicación de unidades condensadora hermetica 60 Hz. Danfoss, 5.
- Danfoss. (2010). Selección rápida. Controles de refrigeración, compresores y unidades condensadoras. Obtenido de http://catalogosaire.splitmania.com/PROVEEDORES/ACTUALIZADAS/DANF OSS/files/assets/common/downloads/publication.pdf
- Danfoss. (s.f.). *Danfoss*. Obtenido de https://www.danfoss.com/es-es/products/valves/dcs/thermostatic-expansion-valves/#tab-overview
- Danfoss Industrias Ltda. (2003). Instructivo para la instalación de compresores MANEUROP. *Danfoss*, 17.
- Danfoss Industrias Ltda. (2003). Instructivo para la instalación de compresores MANEUROP. *Danfoss*, 19.

- Enciclopedia de Clasificaciones. (2017). *Tipos de carnes*. Obtenido de https://www.tiposde.org/general/505-tipos-de-carnes/
- Expofrío. (2015). Funcionamineto de los sitema de refrigeración. *Mercado de frío*., 6.
- Expofrío. (2015). Selección de equipos para la construcción de un sistema de enfriamineto. *Mercado de frío.*, 30-32.
- Foodsafety.gov. (12 de Abril de 2019). *Tabla de conservación de alimentos fríos*. Obtenido de https://espanol.foodsafety.gov/tablas-de-seguridad-alimentaria-mfu8/Tabla-de-conservación-de-alimentos-fríos
- González de la Cruz, R., & González G., R. (2006). *Metodología para la evaluación de sistemas de refrigeración industrial*. Scientia et Technica Año XII, N°3.
- Guillén Mayorga, D. A. (2011). DISEÑO DE INSTALACIONES Y SISTEMA DE REFRIGERACIÓN PARA EL ÓPTIMO ALMACENAJE EN UNA EMPRESA DE PRODUCTOS CÁRNICOS. *INGENIERO MECÁNICO INDUSTRIAL*. Universidad de San Carlos de Guatemala, Guatemala.
- Huertas Samayoa, Z. J. (2013). Diseño de sistema frigorífico para el control de la maduración de una carga de plátanos. *Ingeniero Mecánico*. Universidad de San Carlos de Guatemala, Guatemala, Guatemala.
- Imcosamex. (2013). Separadores de aceite. Obtenido de imcosamex.com/wp-content/uploads/2013/07/funcionan-los-separa4bbce9d82c9bf.pdf
- IPR partes y repuestos. (2018). *IPR partes y repuestos*. Obtenido de https://iprpartesyrepuestos.com/producto/danfoss-presostato-alta-auto-2/
- Lasso Barrionuevo, P. F. (2015). Ingeniero Mecánico. *Diseño de una cámara frigorífica a ser montada en los camiones de la cooperativa de transporte de cárnicos "El camal" de la ciudad de Riobamba*. Escuela Superior Politécnica de Chimborazo, Chimborazo, Riobamba, Ecuador.
- Marketing Industrial. (2016). *Total frío*. Obtenido de https://totalfriocompany.com/shop/refrigeracion/unidades-condensadoras-danfoss/
- Mipal. (2018). Evaporador de aire forzado de bajo perfil. Mipal, 1.
- Pérez Porto, J., & Gardey, A. (2012). *Definición.de*. Obtenido de https://definicion.de/calor/
- Rivera Mata, E. (16 de Febrero de 2018). *Refrigeración para no ingenieros: Cómo elegir tu unidad condensadora*. Obtenido de Mensaje en un blog:

- https://blog.froztec.com/refrigeracion-para-no-ingenieros-como-elegir-tu-unidad-condensadora
- United Technologies. (s.f.). *UTC SERVICIO*. Obtenido de https://www.repuestosutc.es/valvulas-solenoides/18449-valvula-solenoidedanfoss-evr25.html
- Vásquez Benavides, J. L. (2013). Cálculo de una cámara de frío para conservación de hielo, hortalizas y frutas congeladas. Obtenido de http://repobib.ubiobio.cl/jspui/bitstream/123456789/793/1/Vasquez_Benavides _José_Leonardo.pdf
- Zelsio. (22 de Febrero de 2016). *Evaporadores: qué son y diferentes tipos*. Obtenido de Blog: http://www.refrigeracionzelsio.es/blog/evaporadores/

ANEXOS

EVAPORADORES

PERFIL BAJO

Ficha técnica evaporador marca BOHN, modelo ADT208

Modelo ADT

	CAPAC	NDAD	,	entilado	,		i.u.	otor			Dimen	siones			Cono	xiones (Pulc	radae)	Pe	so
	CAPAC	IDAD	,	entilaut	"		IVI	otor	La	rgo	An	cho	A	lto	Cone	kiones (Puig	jauas)	Emba	rque
Modelo	BTUH 10°F DT	Kcal/hr 5.5°C DT	СҒМ	m3/ min	No.	Dia. pulg	115/1/60 FLA	230/1/60 FLA	cm	pulg	cm	pulg	cm	pulg	Líquido	Succión	Drenaje	Lbs.	kg.
ADT040	4000	1008	730	1240	1	12	0.55	0.28	74.93	29.50	37.80	14.88	37.95	14.94	1/2 DE	5/8 DI	5/8 MPT	23	13
ADT052	5200	1310	700	1189	1	12	0.55	0.28	74.93	29.5	37.80	14.88	37.95	14.94	1/2 DE	5/8 DI	5/8 MPT	31	15
ADT065	6500	1637	650	1104	1	12	0.55	0.28	74.93	29.5	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	34	16
ADT070	7000	1763	1460	2481	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	45	21
ADT090	9000	2267	1400	2379	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	48	22
ADT104	10400	2620	1400	2379	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	49	23
ADT120	12000	3023	1300	2209	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	51	24
ADT130	13000	3275	1300	2209	2	12	1.10	0.56	115.57	45.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	53	25
ADT140	14000	3526	2100	3568	3	12	1.65	0.84	156.21	61.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	63	29
ADT156	15600	3929	2100	3568	3	12	1.65	0.84	156.21	61.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	67	31
ADT180	18000	4534	1950	3313	3	12	1.65	0.84	156.21	61.50	37.80	14.88	37.95	14.94	1/2 DE	7/8 DI	5/8 MPT	69	32
ADT208	20800	5239	2800	4758	4	12	2.20	1.12	196.85	77.50	37.80	14.88	37.95	14.94	1/2 DE	1 1/8 DI	5/8 MPT	82	38
ADT260	26000	6549	3250	5522	5	12	2.75	1.40	237.49	93.50	37.80	14.88	37.95	14.94	1/2 DE	1 1/8 DI	5/8 MPT	103	47
ADT312	31200	7859	3900	6627	6	12	3.30	1.68	278.13	109.50	37.80	14.88	37.95	14.94	1/2 DE	1 1/8 DI	5/8 MPT	124	57
ADT370	37000	9320	3900	6627	6	12	3.30	1.68	278.13	109.50	37.80	14.88	37.95	14.94	1/2 DE	1 3/8 DI	5/8 MPT	127	58

Capacidad a -3.9 °C (25°F) temperatura de evaporación

6

DESHIELOPOR AIRE

Fuente: (BOHN, 2019)

Especificaciones generales de la unidad condensadora modelo HCZ 028

Especificações Gerais

			Comp	ressor		Condensador				
Modelos	Referência Comercial	Peso		Volume				Vent	ilador	
Modelos	(HP)	(Kg)	Modelo	deslocado (m³/h)	Carga de óleo (litros)	Vazão de ar (m³/h)	Tipo Serpentina	Qtde (Nb)	Ø do vent. (mm)	
HCM 009	3/4	41	T6220	3,8	0,70	700	B4	1	254	
HCM 012	1	45	J9226	4,7	0,89	850	B5	1	300	
HCM 015	1 1/4	47	J9232	5,7	0,89	960	C4	1	300	
HCM / HCZ 018	1 1/2	49	MT / MTZ 18	6,3	0,95	1500	C5	1	300	
HCM / HCZ 022	2	59	MT / MTZ 22	8,0	0,95	2325	D5	1	355	
HCM / HCZ 028	2 1/2	65	MT / MTZ 28	10,1	0,95	4100	E5	1	450	
HCM / HCZ 032	2 3/4	72	MT / MTZ 32	11,3	0,95	4100	E5	1	450	
HCM / HCZ 036	3	74	MT / MTZ 36	12,7	0,95	4100	G5	1	450	
HCM / HCZ 040	3 1/2	84	MT / MTZ 40	14,3	0,95	4100	H5	1	450	
HCM / HCZ 044	4	85	MT / MTZ 44	16,0	1,8	4100	J5	1	450	
HCM / HCZ 050	4 1/2	95	MT / MTZ 50	18,0	1,8	4100	J5	1	450	
HCM / HCZ 056	5	95	MT / MTZ 56	20,2	1,8	4100	J5	1	450	
HCM / HCZ 064	5 1/2	110	MT / MTZ 64	22,6	1,8	4100	J5	1	450	
HGM / HGZ 072	6	125	MT / MTZ 72	25,4	1,8	8600	МЗ	2	450	
HGM / HGZ 080	7	128	MT / MTZ 80	28,5	1,8	8600	МЗ	2	450	
HGM / HGZ 100	9	154	MT / MTZ 100	36,0	3,9	8200	N3	2	450	
HGM / HGZ 125	10 1/2	225	MT / MTZ 125	45,2	3,9	15250	P3	2	600	
HGM / HGZ 144	12	230	MT / MTZ 144	50,8	3,9	15250	P3	2	600	
HGM / HGZ 160	13 1/2	245	MT / MTZ 160	57,0	3,9	13500	Q3	2	600	
LCM / LCZ 022	2	51	LT / LTZ 22	10,1	0,95	1400	C5	1	300	
LCM / LCZ 028	2 1/2	62	LT / LTZ 28	14,2	0,95	3250	D5	1	355	
LCM / LCZ 044	4	85	LT / LTZ 44	22,6	1,8	5650	G5	1	450	
LCM / LCZ 050	4 1/2	98	LT / LTZ 50	28,5	1,8	4650	H5	1	450	
LGM / LGZ 088	7 1/2	144	LT / LTZ 88	45,2	3,9	9000	L3	2	450	
LGM / LGZ 100	9	150	LT / LTZ 100	57,0	3,9	9000	L3	2	450	

Especificações Gerais

			Conexões			Ta	anque de líquid	lo
Modelos		Linhas		Conde	nsador	Diâmetro		Volume
Modelos	Sucção (pol)	Descarga (pol)	Líquido (pol)	Entrada (pol)	Saída (pol)	externo (mm)	Altura (mm)	interno (litros)
HCM 009	1/2"	3/8"	3/8"	3/8"	3/8"	102	252	2,4
HCM 012	1/2"	3/8"	3/8"	3/8"	3/8"	102	252	2,4
HCM 015	1/2"	1/2"	3/8"	1/2″	3/8"	130	252	3,1
HCM / HCZ 018	1/2"	1/2"	3/8"	1/2"	3/8"	130	252	3,1
HCM / HCZ 022*	1/2"	1/2"	3/8"	1/2"	3/8"	130	252	3,1
HCM / HCZ 028*	1/2"	1/2"	1/2"	1/2"	1/2"	170	291	6
HCM / HCZ 032	5/8"	1/2"	1/2"	1/2"	1/2"	170	384	7,5
HCM / HCZ 036	5/8"	1/2"	1/2"	1/2"	1/2"	170	384	7,5
HCM / HCZ 040	5/8"	1/2"	1/2"	1/2"	1/2"	170	384	7,5
HCM / HCZ 044	7/8"	5/8"	1/2"	5/8"	1/2"	170	384	7,5
HCM / HCZ 050	7/8"	5/8"	1/2"	5/8"	1/2"	170	384	7,5
HCM / HCZ 056	7/8"	5/8"	1/2"	5/8"	1/2"	170	384	7,5
HCM / HCZ 064	7/8"	3/4"	1/2"	3/4"	1/2"	70	384	7,5
HGM / HGZ 072	1 1/8"	3/4"	5/8"	3/4"	5/8"	220	455	14
HGM / HGZ 080	1 1/8"	3/4"	5/8"	3/4"	5/8″	220	455	14
HGM / HGZ 100	1 1/8"	3/4"	5/8"	3/4"	5/8"	220	455	14
HGM / HGZ 125	1 1/8"	7/8"	5/8"	3/4"	5/8"	220	455	14
HGM / HGZ 144	1 1/8"	7/8"	5/8"	3/4"	5/8"	220	455	14
HGM / HGZ 160	1 1/8"	7/8"	5/8"	3/4"	5/8″	220	455	14
LCM / LCZ 022	5/8"	3/8"	3/8"	3/8"	3/8"	130	252	3,1
LCM / LCZ 028	5/8"	1/2"	3/8"	1/2"	1/2″	130	252	3,1
LCM / LCZ 044	7/8"	5/8"	1/2"	5/8"	1/2"	220	384	7,5
LCM / LCZ 050	7/8"	5/8"	1/2"	5/8"	1/2"	220	384	7,5
LGM / LGZ 088	1 1/8"	3/4"	1/2"	3/4"	5/8″	220	350	10
LGM / LGZ 100	1 1/8"	3/4"	1/2"	3/4"	5/8"	220	350	10

^{*} Para os modelos HCM / HCZ - LGM / LGZ 022 e 028 na opção monofásica, a linha de sucção é de 5/8".

Dados de Capacidade

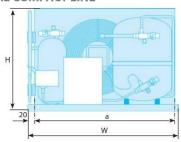
R-404A / R-507

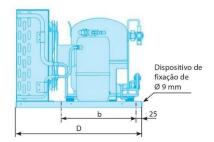
HCZ/HGZ

Modelos	TE	+10		+5°		0°0		-5°		-10		-15		-20		-25		-30	
Modelos	TA	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.	C.R.	P.C.
	32	4321	2,2	3753	2,0	3194	1,8	2657	1,7	2153	1,5	1695	1,4	1291	1,2	1035	1,0	731	0,9
HCZ 018	35	4024	2,3	3492	2,1	2968	1,9	2464	1,7	1991	1,5	1558	1,4	1174	1,2	915	1,1	620	0,9
	38	3726	2,3	3230	2,1	2742	1,9	2271	1,7	1828	1,5	1421	1,4	1058	1,2	796	1,1	510	0,9
	43			2790	2,2	2373	1,9	1969	1,7	1584	1,5	1228	1,40	906	1,20	664	1,10	401	0,90
	32	5702	2,9	5026	2,7	4361	2,4	3714	2,2	3095	1,9	2513	1,7	1978	1,5	1497	1,2	1079	0,9
HCZ 022	35	5308	3,0	4675	2,8	4054	2,5	3449	2,2	2869	2,0	2322	1,7	1817	1,5	1360	1,2	958	0,9
	38	4914	3,0	4325	2,8	3746	2,5	3184	2,2	2643	2,0	2131	1,7	1656	1,4	1223	1,2	838	0,9
	43	4196	3,2	3703	2,9	3216	2,6	2737	2,3	2272	2	1828	1,70	1408	1,40	1020	1,10	667	0,80
	32	7479	3,7	6521	3,4	5599	3,1	4722	2,8	3904	2,5	3157	2,2	2490	2,0	1909	1,7	1418	1,4
HCZ 028	35	7010	3,8	6107	3,5	5237	3,2	4410	2,9	3638	2,6	2930	2,3	2295	2,0	1739	1,7	1264	1,4
	38	6542	3,9	5692	3,5	4874	3,2	4098	2,9	3371	2,6	2704	2,3	2101	2,0	1569	1,7	1109	1,4
	43			4962	3,7	4256	3,3	3582	3,0	2946	2,6	2356	2,30	1818	2,00	1336	1,60	911	1,30
	32	8926	4,0	7686	3,7	6520	3,4	5440	3,1	4457	2,8	3582	2,5	2819	2,2	2171	1,9	1635	1,6
HCZ 032	35	8427	4,1	7242	3,8	6130	3,5	5102	3,2	4165	2,9	3330	2,6	2600	2,3	1975	2,0	1453	1,7
	38	7927	4,2	6798	3,9	5741	3,6	4764	3,2	3874	2,9	3079	2,6	2380	2,3	1779	2,0	1271	1,7
	43	7039	4,4	6040	4,1	5101	3,7	4231	3,3	3436	3	2721	2,60	2088	2,30	1537	2,00	1064	1,7
	32	9557	4,8	8340	4,3	7166	3,9	6050	3,5	5011	3,2	4063	2,8	3216	2,5	2479	2,1	1854	1,8
HCZ 036	35	9012	4,9	7852	4,4	6734	4,0	5673	3,6	4684	3,3	3778	2,9	2967	2,5	2257	2,1	1649	1,8
	38	8468	5,0	7363	4,5	6302	4,1	5295	3,7	4356	3,3	3494	2,9	2719	2,5	2035	2,1	1443	1,8
	43	11507	F 0	6496	4,7	5564	4,2	4675	3,8	3840	3,3	3068	2,90	2366	2,50	1739	2,10	1187	1,7
	32	11587	5,2	10011	4,8	8513	4,4	7110	4,0	5817	3,6	4647	3,2	3610	2,8	2711	2,4	1952	2,0
HCZ 040	35	10920	5,4	9430	4,9	8013	4,5	6686	4,1	5460	3,7	4349	3,3	3358	2,9	2494	2,5	1757	2,1
	38	10254	5,5	8849	5,0	7514	4,6	6262	4,1	5103	3,7	4050	3,3	3106	2,9	2276	2,5	1561	2,1
	43	9089	5,7	7856	5,2	6680	4,7	5572	4,3	4542	3,8	3597	3,30	2743	2,90	1983	2,50	1318	2,10
	32	11833	6,2	10474	5,6	9090	5,0	7709	4,5	6345	4,0	5041	3,4	3842	3,0	2956	2,7	2211	2,3
HCZ 044	35	11264	6,3	9942	5,7	8591	5,2	7236	4,5	5895	4,0	4636	3,5	3549	3,1	2688	2,8	1957	2,4
	38	10695	6,5	9411	5,8	8093	5,3	6762	4,5	5445	3,9	4231	3,5	3256	3,2	2421	2,9	1702	2,4
	43	12064		8201	5,9	7074	5,3	5934	4,7	4803	4,122	3757	3,63	2921	3,25	2118	2,78	1417	2,4
	32	13964	6,6	12163	6,0	10427	5,5	8782	5,0	7254	4,5	5865	4,0	4632	3,5	3564	3,1	2666	2,7
HCZ 050	35	13127	6,8	11416	6,2	9768	5,6	8206	5,1	6753	4,5	5428	4,0	4247	3,5	3218	3,1	2343	2,7
	38	12289	6,9	10669	6,3	9109	5,7	7630	5,1	6251	4,5	4991	4,0	3862	3,5	2872	3,1	2019	2,6
	43	45474	F 0	9372	6,4	7999	5,8	6690	5,2	5463	4,6	4332	4,00	3308	3,50	2399	3,00	1605	2,60
	32	15474	5,0	13667	5,0	11879	5,0	10129	4,6	8449	4,2	6878	4,0	5252	3,5	4057	3,0	3034	2,5
HCZ 056	35	14538	5,5	12840	5,4	11165	5,2	9521	4,9	7939	4,4	6395	4,0	4798	3,5	3652	3,0	2663	2,5
	38	13603	6,0	12013	5,8	10451	5,5	8913	5,2	7429	4,6	5912	4,0	4345	3,5	3248	3,0	2291	2,5
	43	10021	0.7	10553	5,9	9177	5,5	7815	5,3	6492	4,727	5131	4,00	3722	3,50	2717	2,94	1828	2,4
		18031	8,3	15727 14814	7,6	13517 12710	6,9 7,0	11430	6,3	9488	5,6 5,7	7714 7170	5,0 5,1	6125 5642	4,4	4732 4294	3,8	3539	3,2
HCZ 064	35 38	17008	8,5 8,7	13900	7,8	11902		10721 10011	6,4	8867	5,7	6625		5159	4,4	3856	3,8	3130 2720	3,2
	43	15986			7,9		7,1		6,4	8247			5,1						
		14156	8,9	12317	8,1	10544	7,3	8856	6,5	7271	5,8	5803	5,10	4463	4,40	3258	3,70	2191	3,10
	32	19401	9,6	16994	8,7	14669	7,9	12457	7,1	10390	6,4	8494	5,7	6789	5,0	5289	4,5	4047	3,8
HGZ 072	35	18284	9,8	15999	8,9	13791	8,0	11688	7,2	9720	6,5	7908	5,7	6272	5,1	4824	4,5	3619	3,8
	38	17167	9,9	15004	9,0	12913	8,2	10919	7,3	9049	6,5	7322	5,8	5755	5,1	4358	4,5	3191	3,8
	43	15148	10,3	13250	9,3	11403	8,3	9631	7,4	7957	6,554	6397	5,80	4967	5,13	3674	4,46	2599	3,8
	32	21564	11,2	18965	10,2	16441	9,2	14029	8,3	11764	7,4	9675	6,6	7788	5,8	6121	5,1	4610	4,4
HGZ 080	35	20320	11,4	17857	10,4	15464	9,4	13174	8,4	11019	7,5	9026	6,7	7216	5,9	5574	5,1	4023	4,4
	38	19076	11,6	16749	10,5	14487	9,5	12320	8,5	10274	7,6	8376	6,7	6644	5,9	5027	5,1	3435	4,4
	43	16826	12,0	14795	10,8	12808	9,7	10891	8,6	9068	7,6	7360	6,70	5785	5,90	4180	5,10	2693	4,4
	32	24826	10,9	21700	10,6	18658	9,7	15747	8,9	13016	8,1	10505	7,3	8252	6,5	6282	5,7	4684	4,9
HGZ 100	35	23301	11,2	20340	10,9	17460	9,9	14702	9,1	12108	8,2	9715	7,4	7556	6,5	5688	5,7	4206	4,9
	38	21776	11,5	18981	11,1	16262	10,1	13656	9,2	11199	8,3	8924	7,4	6860	6,5	5093	5,7	3729	4,9
	43			-		14217	10,4	11932	9,4	9759	8,4	7728	7,40	5863	6,50	4357	5,60	3082	4,80
	32	33810	14,1	29419	13,2	25226	12,2	21273	11,2	17599	10,1	14242	9,0	11229	7,9	8584	6,7	6317	5,5
HGZ 125	35	31905	14,7	27709	13,6	23701	12,5	19917	11,4	16392	10,2	13158	9,0	10242	7,8	7664	6,6	5432	5,4
	38	29999	15,2	26000	14,0	22176	12,8	18561	11,5	15184	10,3	12074	9,0	9255	7,7	6744	6,4	4548	5,2
	43	26600	16,2	23068	14,8	19666	13,4	16423	11,9	13367	10,5	10524	9,00	7917	7,60	5563	6,30	3474	4,9
	32	36577	17,4	32029	15,9	27640	14,5	23475	13,2	19598	12,0	16061	10,8	12906	9,7	10159	8,6	7830	7,5
	35	34495	17,8	30161	16,2	25984	14,8	22023	13,4	18333	12,2	14962	10,9	11943	9,8	9298	8,7	7034	7,6
HGZ 144	38	32413	18,2	28293	16,5	24328	15,0	20571	13,6	17069	12,3	13862	11,0	10980	9,8	8437	8,7	6238	7,6
HGZ 144				24929	17,1	21456	15,5	18146	13,9	15041	12,5	12174	11,20	9573	9,90	7251	8,70	5211	7,6
HGZ 144	43			00000	303	20500	16,6	26104	15,1	21898	13,7	18028	12,3	14542	10,9	11472	9,6	8839	8,3
HGZ 144	32	40141	19,7	35289	18,1	30588													
HGZ 144	32 35	37757	20,2	33169	18,5	28724	16,9	24481	15,4	20495	13,9	16815	12,4	13484	11,0	10532	9,7	7975	
HGZ 144 HGZ 160	32											16815 15602 13693							8,3 8,3 8,3

LEGENDA C.R. = Capacidade de Refrigeração (kcal/h) **P.C.** = Potência Consumida (kW)

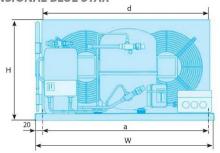
T.E. = Temperatura Evaporação ^OC **T.A.** = Temperatura Ambiente ^OC

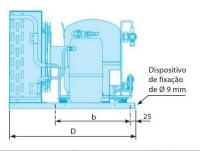

CONDIÇÕES NOMINAIS• Superaquecimento a 18 K
• Sub-resfriamento 3 K


Datos generales

Dados Gerais

DIMENSIONAL COMPACT LINE





Modelos		Dimensões gerais		Fixação			
Wiodelos	W (mm)	D (mm)	H (mm)	a (mm)	b (mm)		
HCM 009	550	450	345	400	405		
HCM 012	550	450	345	400	405		
HCM 015	700	500	442	660	300		
HCM / HCZ 018 *	700	500	442	660	300		
HCM / HCZ 022*	700	500	442	660	300		
HCM / HCZ 028	800	600	548	760	400		
HCM / HCZ 032	800	600	548	760	400		
HCM / HCZ 036	800	600	548	760	400		
HCM / HCZ 040	800	700	696	760	450		
HCM / HCZ 044	800	700	696	760	450		
HCM / HCZ 050	800	700	696	760	450		
HCM / HCZ 056	800	700	696	760	450		
HCM / HCZ 064	800	700	696	760	450		
LCM / LCZ 022 *	700	500	442	660	300		
LCM / LCZ 028 *	700	500	442	660	300		
LCM / LCZ 044	800	600	548	760	400		
LCM / LCZ 050	800	700	696	760	450		

^{*}Para as opções de montagem 49 e 50, considerar as dimensões das unidades HCM / HCZ 028.

DIMENSIONAL BLUE STAR

Modelos		Dimensões gerais		Fixação			
Modelos	W (mm)	D (mm)	H (mm)	a (mm)	b (mm)		
HGM / HGZ 072	1200	800	671	1160	500		
HGM / HGZ 080	1200	800	671	1160	500		
HGM / HGZ 100	1200	800	671	1160	500		
HGM / HGZ 125	1500	870	975	1460	500		
HGM / HGZ 144	1500	870	975	1460	500		
HGM / HGZ 160	1500	870	975	1460	500		
LGM / LGZ 088	1200	800	671	1160	500		
LGM / LGZ 100	1200	800	671	1160	500		

CARACTERÍSTICAS ELÉTRICAS

				Comp	ressor				Vent	ilador
Modelos	MCC - 0	Corrente má	xima de ser	viço (A)	LRA - C	orrente de r	otor bloque	ado (A)	Corrente nominal (A)	Potência consumida (W)
	230V/1F	230V/3F	380V/3F	440V/3F	230V/1F	230V/3F	380V/3F	440V/3F	220V/1F	220V/1F
HCM 009	5,3				17,0			-	1 x 0,55	1 x 80
HCM 012	6,5		-		20,8			-	1 x 0,55	1 x 80
HCM 015	7,7				24,6				1 x 1,1	1 x 170
HCM / HCZ 018	13,0	9,0	7,0	5,0	51,0	38,0	16,0	16,0	1 x 1,1	1 x 170
HCM / HCZ 022	17,0	11,0	8,0	6,0	49,3	38,0	16,0	16,0	1 x 1,5	1 x 240
HCM / HCZ 028	25,0	16,0	11,0	7,5	81,0	57,0	23,0	23,0	1 x 2,2	1 x 450
HCM / HCZ 032	26,5	18,0	9,0	8,0	84,0	60,0	35,0	35,0	1 x 2,2	1 x 450
HCM / HCZ 036	30,0	17,0	9,5	9,0	84,0	74,0	35,0	30,0	1 x 2,2	1 x 450
HCM / HCZ 040	34,0	22,0		10,0	99,0	98,0		38,0	1 x 2,2	1 x 450
HCM / HCZ 044	34,0	22,0	13,0	9,5	103,0	115,0	78,0	42,0	1 x 2,2	1 x 450
HCM / HCZ 050	37,0	25,0	13,5	12,0	143,0	115,0	78,0	42,0	1 x 2,2	1 x 450
HCM / HCZ 056									1 x 2,2	1 x 450
HCM / HCZ 064	53,0	29,0	17,5	15,0	148,0	137,0	72,0	67,0	1 x 2,2	1 x 450
HGM / HGZ 072		31,0	18,5	15,5		135,0	100,0	80,0	2 x 2,2	2 x 450
HGM / HGZ 080		36,0	22,5	18,0		155,0	102,0	80,0	2 x 2,2	2 x 450
HGM / HGZ 100		43,0	26,0	22,0		157,0	110,0	90,0	2 x 2,2	2 x 450
HGM / HGZ 125		54,0	30,0	27,0	-	210,0	150,0	105,0	2 x 2,2	2 x 450
HGM / HGZ 144		64,0	40,0	30,0		259,0	165,0	115,0	2 x 2,2	2 x 450
HGM / HGZ 160		70,0	46,0	36,0	-	259,0	165,0	130,0	2 x 2,2	2 x 450
LCM / LCZ 022	17,0	11,0	5,0	6,0	49,3	38,0	22,5	16,0	2 x 1,1	2 x 170
LCM / LCZ 028	25,0	16,0	8,5	7,5	81,0	57,0	32,0	23,0	2 x 1,1	2 x 170
LCM / LCZ 044	34,0	22,0	11,0	9,5	103,0	115,0	57,0	42,0	2 x 1,5	2 x 240
LCM / LCZ 050	37,0	23,0	15,0	12,0	143,0	115,0	64,0	40,0	2 x 1,5	2 x 240
LGM / LGZ 088		43,0	23,0	22,0		157,0	110,0	90,0	2 x 2,2	2 x 450
LGM / LGZ 100		54,0	30,0	27,0	-	210,0	150,0	105,0	2 x 2,2	2 x 450

Nota: Os dados elétricos do ventilador podem variar ligeiramente, dependendo do fabricante do motor.

MCC é a corrente máxima na qual o protetor interno desliga o compressor. Toda a fiação elétrica deve cumprir legislação local e nacional.

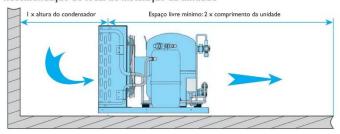
Sob condições normais, a corrente de operação da unidade condensadora será menor.

Instalar um fusível de proteção (fusíveis de tempo) específico para motores. Não subdimensionar os contatores, o que poderia resultar na queima do motor.

Instalação e Manutenção

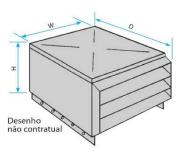
LOCALIZAÇÃO DA UNIDADE

A unidade condensadora deve estar localizada em uma área bem ventilada, na qual o fluxo de ar não deve ser restringido.


É importante verificar que não haja recirculação do fluxo de ar do condensador e que a temperatura do ar ambiente esteja sempre em conformidade com a seleção da unidade condensadora.

Certificar-se de que a unidade esteja protegida contra intempéries.

Verificar a rotação adequada do ventilador (ar em direção ao compressor).


Para otimizar as condições de operação da unidade, a serpentina do condensador deve ser limpa regularmente.

Recomendação do local de instalação da unidade

Carenagem

Para instalação externa, providenciar um abrigo ou utilizar a carenagem apropriada Blue Star. A Danfoss pode fornecer carenagens, que são feitas de chapas pintadas em epóxi. Quando a unidade condensadora é instalada em uma máquina de refrigeração montada em fábrica, verificar se a caixa da máquina não restringe o fluxo de ar do condensador.

Modelos		Dimensões gerais		Código de carenagem
Wodelos	W (mm)	D (mm)	H (mm)	Codigo de carenagem
HCM 009	450	612	365	191U1265
HCM 012	450	612	365	191U1265
HCM 015	705	514	456	191U1270
HCM / HCZ 018	705	514	456	191U1270
HCM / HCZ 022	705	514	456	191U1270
HCM / HCZ 028	805	614	550	191U1272
HCM / HCZ 032	805	614	550	191U1272
HCM / HCZ 036	805	614	550	191U1272
HCM / HCZ 040	805	714	705	191U1272
HCM / HCZ 044	805	714	705	191U1272
HCM / HCZ 050	805	714	705	191U1272
HCM / HCZ 056	805	714	705	191U1272
HCM / HCZ 064	805	714	705	191U1272
HGM / HGZ 064	1250	875	700	191U1263
HGM / HGZ 072	1250	875	700	191U1263
HGM / HGZ 080	1250	875	700	191U1263
HGM / HGZ 100	1250	875	700	191U1263
HGM / HGZ 125	1550	945	1000	191U1264
HGM / HGZ 144	1550	945	1000	191U1264
HGM / HGZ 160	1550	945	1000	191U1264
LCM / LCZ 022	705	514	456	191U1270
LCM / LCZ 028	805	614	550	191U1271
LCM / LCZ 044	805	714	705	191U1272
LCM / LCZ 050	805	714	705	191U1272
LGM / LGZ 088	1250	875	700	191U1263
LGM / LGZ 100	1250	875	700	191U1263